RESUMEN
Metal-Organic Frameworks (MOFs) with open metal sites (OMS) interact strongly with a range of polar gases/vapors. However, under ambient conditions, their selective adsorption is generally impaired due to a high OMS affinity to water. This led previously to the privilege selection of hydrophobic MOFs for the selective capture/detection of volatile organic compounds (VOCs). Herein, we show that this paradigm is challenged by metal(III) polycarboxylates MOFs, bearing a high concentration of OMS, as MIL-100(Fe), enabling the selective capture of polar VOCs even in the presence of water. With experimental and computational tools, including single-component gravimetric and dynamic mixture adsorption measurements, in situ infrared (IR) spectroscopy and Density Functional Theory calculations we reveal that this adsorption mechanism involves a direct coordination of the VOC on the OMS, associated with an interaction energy that exceeds that of water. Hence, MOFs with OMS are demonstrated to be of interest for air purification purposes.
RESUMEN
The potential of safe and low-cost batch production processes for Metal-Organic Frameworks (MOFs) at an industrial scale has been evaluated based on the prototypical MOF MIL-160(Al), a bio-derived material of high practical interest that can be made with a high space-time yield using green ambient pressure conditions. A simple method to calculate the production cost of this material has been determined based on a simulated process constructed with the data collected from laboratory pilot large-scale tests taking into account for the first time in MOF cost evaluation all the process parameters such as the scale, the cost of the raw materials, recirculation, and washing. The investment for a production plant established the ground for the estimation of the complete cost. The expected cost ranged from ca. 55 $ per kg at 100 tons per year down to 29.5 $ per kg for 1 kton per year production with longer term perspectives of reaching costs below 10 $ per kg once the bio-derived ligand is considered for the large-scale production of bioplastics.