Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Plant Pathol ; 24(7): 758-767, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36180934

RESUMEN

Northern corn leaf blight, caused by the fungal pathogen Exserohilum turcicum, is a major disease of maize. The first major locus conferring resistance to E. turcicum race 0, Ht1, was identified over 50 years ago, but the underlying gene has remained unknown. We employed a map-based cloning strategy to identify the Ht1 causal gene, which was found to be a coiled-coil nucleotide-binding, leucine-rich repeat (NLR) gene, which we named PH4GP-Ht1. Transgenic testing confirmed that introducing the native PH4GP-Ht1 sequence to a susceptible maize variety resulted in resistance to E. turcicum race 0. A survey of the maize nested association mapping genomes revealed that susceptible Ht1 alleles had very low to no expression of the gene. Overexpression of the susceptible B73 allele, however, did not result in resistant plants, indicating that sequence variations may underlie the difference between resistant and susceptible phenotypes. Modelling of the PH4GP-Ht1 protein indicated that it has structural homology to the Arabidopsis NLR resistance gene ZAR1, and probably forms a similar homopentamer structure following activation. RNA sequencing data from an infection time course revealed that 1 week after inoculation there was a threefold reduction in fungal biomass in the PH4GP-Ht1 transgenic plants compared to wild-type plants. Furthermore, PH4GP-Ht1 transgenics had significantly more inoculation-responsive differentially expressed genes than wild-type plants, with enrichment seen in genes associated with both defence and photosynthesis. These results demonstrate that the NLR PH4GP-Ht1 is the causal gene underlying Ht1, which represents a different mode of action compared to the previously reported wall-associated kinase northern corn leaf blight resistance gene Htn1/Ht2/Ht3.


Asunto(s)
Ascomicetos , Leucina/genética , Ascomicetos/fisiología , Fenotipo , Zea mays/microbiología , Nucleótidos , Enfermedades de las Plantas/microbiología , Resistencia a la Enfermedad/genética
2.
J Food Prot ; 66(4): 637-43, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12696688

RESUMEN

High-oil corn (Zea mays L.) grain is a valuable component of feed for monogastric livestock. One method of increasing the concentration of oil in corn grain is the TopCross method. With TopCross, ears of a cytoplasmic male-sterile, normal-oil hybrid are pollinated by a male-fertile, high-oil synthetic hybrid. The concentration of oil in the resulting grain is increased because of xenia effects. Kernels of high-oil corn typically have a larger germ and a smaller endosperm than kernels of comparable normal hybrids. The growth of Aspergillus flavus Link:Fr within germ tissue has been reported to be more extensive than that on the whole corn kernel; therefore, the severity of Aspergillus ear rot could be more extensive and aflatoxin concentrations could be higher in high-oil grain produced by TopCross than in grain with a lower concentration of oil. The objective of this study was to compare Aspergillus ear rot severity levels and aflatoxin concentrations in the grains of hybrids crossed with high-oil or normal-oil pollinators. Fifteen hybrids were evaluated in 1998 and 1999 in Urbana, Ill. Primary ears were inoculated with A. flavus and evaluated for susceptibility to Aspergillus ear rot and aflatoxin production in grain. Concentrations of aflatoxin and oil in corn kernels were significantly higher for high-oil hybrids than for normal-oil hybrids; however, ear rot severity was unaffected by the type of pollinator. These results suggest that grain from high-oil hybrids is at greater risk for aflatoxin contamination during some growing seasons.


Asunto(s)
Aflatoxinas/biosíntesis , Aspergillus/crecimiento & desarrollo , Zea mays/microbiología , Alimentación Animal , Aspergillus/metabolismo , Cruzamientos Genéticos , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Aceites de Plantas , Zea mays/química , Zea mays/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA