Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proteomics ; 24(7): e2300282, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38135888

RESUMEN

The use of mass spectrometry and antibody-based sequencing technologies at the single-cell level has led to an increase in single-cell proteomic datasets. Integrating these datasets is crucial to eliminate the batch effect that often arises due to their limited sequencing molecules. Although methods for horizontally integrating high-dimensional single-cell transcriptomic datasets can also be applied to single-cell proteomic datasets, a specialized approach explicitly tailored for low-dimensional proteomic datasets may enhance the integration process. Here, we introduce SCPRO-HI, an algorithm for the horizontal integration of antibody-based single-cell proteomic datasets. It utilizes a hierarchical cell anchoring technique to match cells based on the similarity of distinctive proteins for constituting cell clusters. A novel variational auto-encoder model is employed for correcting batch effects on the protein abundances, eliminating the need for mapping them into a new domain. Moreover, we propose a technique for extending the algorithm to high-dimensional datasets. The performance of the SCPRO-HI algorithm is evaluated using simulated and real-world single-cell proteomic datasets. The findings demonstrate our algorithm outperforms state-of-the-art methods, achieving a 75% higher silhouette score while preserving HVPs 13% better. Furthermore, the algorithm shows competitive performance in transcriptomic datasets, suggesting potential for integrating high-dimensional mass-spectrometry-based proteomic datasets.


Asunto(s)
Proteínas , Proteómica , Proteómica/métodos , Algoritmos , Perfilación de la Expresión Génica/métodos , Transcriptoma , Análisis de la Célula Individual
2.
Bioinformatics ; 29(10): 1357-8, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23515528

RESUMEN

SUMMARY: Knowledge of pathogen-host protein interactions is required to better understand infection mechanisms. The pathogen-host interaction search tool (PHISTO) is a web-accessible platform that provides relevant information about pathogen-host interactions (PHIs). It enables access to the most up-to-date PHI data for all pathogen types for which experimentally verified protein interactions with human are available. The platform also offers integrated tools for visualization of PHI networks, graph-theoretical analysis of targeted human proteins, BLAST search and text mining for detecting missing experimental methods. PHISTO will facilitate PHI studies that provide potential therapeutic targets for infectious diseases. AVAILABILITY: http://www.phisto.org. CONTACT: saliha.durmus@boun.edu.tr SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Minería de Datos , Interacciones Huésped-Patógeno , Motor de Búsqueda , Enfermedades Transmisibles , Bases de Datos de Proteínas , Humanos , Internet , Dominios y Motivos de Interacción de Proteínas
3.
Comput Biol Chem ; 101: 107755, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36037723

RESUMEN

Computational identification of human-virus protein-protein interactions (PHIs) is a worthwhile step towards understanding infection mechanisms. Analysis of the PHI networks is important for the determination of pathogenic diseases. Prediction of these interactions is a popular problem since experimental detection of PHIs is both time-consuming and expensive. The available methods use biological features like amino acid sequences, molecular structure, or biological activities for prediction. Recent studies show that the topological properties of proteins in protein-protein interaction (PPI) networks increase the performance of the predictions. The basic network projections, random-walk-based models, or graph neural networks are used for generating topologically enriched (hybrid) protein embeddings. In this study, we propose a three-stage machine learning pipeline that generates and uses hybrid embeddings for PHI prediction. In the first stage, numerical features are extracted from the amino acid sequences using the Doc2Vec and Byte Pair Encoding method. The amino acid embeddings are used as node features while training a modified GraphSAGE model, which is an improved version of the graph convolutional network. Lastly, the hybrid protein embeddings are used for training a binary interaction classifier model that predicts whether there is an interaction between the given two proteins or not. The proposed method is evaluated with comprehensive experiments to test its functionality and compare it with the state-of-art methods. The experimental results on the benchmark dataset prove the efficiency of the proposed model by having a 3-23% better area under curve (AUC) score than its competitors.


Asunto(s)
Redes Neurales de la Computación , Virus , Humanos , Aprendizaje Automático , Proteínas , Área Bajo la Curva
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA