Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Orthod Sci ; 13: 7, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38516108

RESUMEN

BACKGROUND: Demineralization of the enamel surface, which appears as white spot lesions during and after removal of the fixed orthodontic appliance, is the most common disadvantage of the orthodontic treatment course. Using the remineralizing agents during and after orthodontic treatment helps to avoid those enamel defects. OBJECTIVE: The present study aims to assess the remineralizing effect of the chicken eggshell powder on the demineralized enamel surfaces after debonding the orthodontic bracket system. MATERIALS AND METHODS: The current study was performed on 80 prepared premolar crowns embedded into acrylic molds. The samples were prepared to receive routine steps of the bonding process for the bracket system. The paste of the chicken eggshell powder was added to the samples after the debonding process. Scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) were used to evaluate the remineralization effect of the chicken eggshell powder. Also, the Vickers microhardness tester was used to assess the enamel surface microhardness. RESULTS: It was found that the mean value of the Ca/P ratio for the samples before bonding of the orthodontic bracket system was (4.17 ± 2.2). This value significantly decreased to (2 ± 1.3) after debonding of the orthodontic bracket system and then showed a significant increase to (4.79 ± 2.65) after remineralization. These results were assured by the values of the Vickers microhardness tester. CONCLUSION: The chicken eggshell powder has an excellent remineralization effect for the demineralized enamel surface after debonding the orthodontic enamel surface.

2.
Int J Health Sci (Qassim) ; 18(3): 23-29, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38721136

RESUMEN

Objectives: Reinforcement of polymethylmethacrylate (PMMA) denture base resins (DBRs) with inorganic fillers with superior properties and accepted aesthetics are favored and still a big dilemma. This study was undertaken to evaluate the color change, flexural strength, and modulus of elasticity of heat-polymerized DBR material modified with silver nanoparticles (AgNPs) and zirconium dioxide nanoparticles (ZNPs). Methods: Sixty acrylic specimens (30/color test, 30/flexural properties) were fabricated and divided according to nanoparticles type and addition into 3 groups (n = 10). Group-I; unmodified specimens, Group-II; modified specimens with 0.5wt% AgNPs (PMMA/AgNPs), and Group-III; modified specimens with 7.5wt% ZNPs (PMMA/ZNPs). Disc-shape (20 × 3 mm) and bar-shape (65 × 10 × 2.5 mm) specimens were fabricated for color and flexural properties, respectively. The spectrophotometer was used for evaluation of the color change (∆E). The flexural strength and elastic modulus evaluation was carried out using a 3-point bending test (5 mm/min). Tukey's post hoc and one-way ANOVA were used to analyze the data at a significant level P ≤ 0.05. Results: PMMA/AgNPs group exhibited a significant increase in color change when compared with PMMA/ZNPs. PMMA/ZNPs showed significantly the highest flexural strength value when compared with unmodified and PMMA/AgNPs groups (P < 0.001), however, there was an absence of significant differences in terms of flexural strength values between PMMA/AgNPs and unmodified groups (P > 0.05). PMMA/AgNPs insignificantly increased its modulus of elasticity strength (P = 0.09410) while PMMA/ZNPs significantly increased its modulus of elasticity strength (P = 0.00396). Conclusion: The AgNPs and ZNPs addition to PMMA increased the color change and AgNPs change the color of DBRs. The flexural attributes of DBRs have been increased by ZNPs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA