Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36142233

RESUMEN

White-rot basidiomycete fungi are a unique group of organisms that evolved an unprecedented arsenal of extracellular enzymes for an efficient degradation of all components of wood such as cellulose, hemicelluloses and lignin. The exoproteomes of white-rot fungi represent a natural enzymatic toolbox for white biotechnology. Currently, only exoproteomes of a narrow taxonomic group of white-rot fungi-fungi belonging to the Polyporales order-are extensively studied. In this article, two white-rot fungi, Peniophora lycii LE-BIN 2142 from the Russulales order and Trametes hirsuta LE-BIN 072 from the Polyporales order, were compared and contrasted in terms of their enzymatic machinery used for degradation of different types of wood substrates-alder, birch and pine sawdust. Our findings suggested that the studied fungi use extremely different enzymatic systems for the degradation of carbohydrates and lignin. While T. hirsuta LE-BIN 072 behaved as a typical white-rot fungus, P. lycii LE-BIN 2142 demonstrated substantial peculiarities. Instead of using cellulolytic and hemicellulolytic hydrolytic enzymes, P. lycii LE-BIN 2142 primarily relies on oxidative polysaccharide-degrading enzymes such as LPMO and GMC oxidoreductase. Moreover, exoproteomes of P. lycii LE-BIN 2142 completely lacked ligninolytic peroxidases, a well-known marker of white-rot fungi, but instead contained several laccase isozymes and previously uncharacterized FAD-binding domain-containing proteins.


Asunto(s)
Lignina , Polyporales , Basidiomycota , Celulosa/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Proteínas Fúngicas/metabolismo , Hongos/metabolismo , Isoenzimas/metabolismo , Lacasa/metabolismo , Lignina/metabolismo , Peroxidasas/metabolismo , Polyporaceae , Polisacáridos/metabolismo , Trametes/metabolismo
2.
Microbiome Res Rep ; 3(2): 19, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38846022

RESUMEN

Aim: Microbiomes influence the physiology and behavior of multicellular organisms and contribute to their adaptation to changing environmental conditions. However, yeast and bacterial microbiota have usually been studied separately; therefore, the interaction between bacterial and yeast communities in the gut of Drosophila melanogaster (D. melanogaster) is often overlooked. In this study, we investigate the correlation between bacterial and yeast communities in the gut of D. melanogaster. Methods: We studied the shifts in the joint microbiome of Drosophila melanogaster, encompassing both yeasts and bacteria, during adaptation to substrate with varying salt concentrations (0%, 2%, 4%, and 7%) using plating for both yeasts and bacteria and NGS-sequencing of variable 16S rRNA gene regions for bacteria. Results: The microbiome of flies and their substrates was gradually altered at moderate NaCl concentrations (2% and 4% compared with the 0% control) and completely transformed at high salt concentrations (7%). The relative abundance of Acetobacter, potentially beneficial to D. melanogaster, decreased as NaCl concentration increased, whereas the relative abundance of the more halotolerant lactobacilli first increased, peaking at 4% NaCl, and then declined dramatically at 7%. At this salinity level, potentially pathogenic bacteria of the genera Leuconostoc and Providencia were dominant. The yeast microbiome of D. melanogaster also undergoes significant changes with an increase in salt concentration in the substrate. The total yeast abundance undergoes nonlinear changes: it is lowest at 0% salt concentration and highest at 2%-4%. At a 7% concentration, the yeast abundance in flies and their substrate is lower than at 2%-4% but significantly higher than at 0%. Conclusions: The abundance and diversity of bacteria that are potentially beneficial to the flies decreased, while the proportion of potential pathogens, Leuconostoc and Providencia, increased with an increase in salt concentration in the substrate. In samples with a relatively high abundance and/or diversity of yeasts, the corresponding indicators for bacteria were often lowered, and vice versa. This may be due to the greater halotolerance of yeasts compared to bacteria and may also indicate antagonism between these groups of microorganisms.

3.
Foods ; 12(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38231606

RESUMEN

Incorporation of probiotic Lacticaseibacillus paracasei into a standard yogurt starter culture can drastically improve its health promoting properties. However, besides being an advantage in itself, the incorporation of a new probiotic strain can significantly affect the overall composition of fermented milk. In this article, the effect of incorporation of the L. paracasei probiotic strains (KF1 and MA3) into several standard yogurt starter cultures (consisting of the following strains: Streptococcus thermophilus 16t and either Lactobacillus delbrueckii Lb100 or L. delbrueckii Lb200) was investigated. Such parameters as the degree of proteolysis, antioxidant activity, ACE-inhibitory activity, content of organic acids, profile of FAs and profile of volatile organic compounds were measured, and the influence of the starter culture composition on these parameters was described. It was demonstrated that, at least in the case of the studied strains, yogurt with L. paracasei had an advantage over the standard yogurt in terms of the content of acetoin, acetic acid, butyric acid and conjugated linoleic acid. Moreover, the incorporation of L. paracasei KF1 significantly improved the hypotensive properties of the resulting yogurt. Thus, the presented study provides insight into the bioactive molecules of probiotic yogurt and may be useful for both academia and industry in the development of new dairy-based functional products.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA