Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
medRxiv ; 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38313291

RESUMEN

Objective: To investigate the relationship between vaccination rates and excess mortality during distinct waves of SARS-CoV-2 variant-specific infections, while considering a state's GDP per capita. Methods: We ranked U.S. states by vaccination rates and GDP and employed the CDC's excess mortality model for regression and odds ratio analysis. Results: Regression analysis reveals that both vaccination and GDP are significant factors related to mortality when considering the entire U.S. population. Notably, in wealthier states (with GDP above $65,000), excess mortality is primarily driven by slow vaccination rates, while in less affluent states, low GDP plays a major role. Odds ratio analysis demonstrates an almost twofold increase in mortality linked to the Delta and Omicron BA.1 virus variants in states with the slowest vaccination rates compared to those with the fastest (OR 1.8, 95% CI 1.7-1.9, p < 0.01). However, this gap disappeared in the post-Omicron BA.1 period. Conclusion: The interplay between slow vaccination and low GDP per capita drives high mortality.

2.
bioRxiv ; 2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38903115

RESUMEN

Microproteins encoded by small open reading frames (smORFs) comprise the "dark matter" of proteomes. Although functional microproteins were identified in diverse organisms from all three domains of life, bacterial smORFs remain poorly characterized. In this comprehensive study of intergenic smORFs (ismORFs, 15-70 codons) in 5,668 bacterial genomes of the family Enterobacteriaceae, we identified 67,297 clusters of ismORFs subject to purifying selection. The ismORFs mainly code for hydrophobic, potentially transmembrane, unstructured, or minimally structured microproteins. Using AlphaFold Multimer, we predicted interactions of some of the predicted microproteins encoded by transcribed ismORFs with proteins encoded by neighboring genes, revealing the potential of microproteins to regulate the activity of various proteins, particularly, under stress. We compiled a catalog of predicted microprotein families with different levels of evidence from synteny analysis, structure prediction, and transcription and translation data. This study offers a resource for investigation of biological functions of microproteins.

3.
NAR Genom Bioinform ; 6(2): lqae070, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38881577

RESUMEN

Ribosomal DNA (rDNA) repeat units are organized into tandem clusters in eukaryotic cells. In mice, these clusters are located on at least eight chromosomes and show extensive variation in the number of repeats between mouse genomes. To analyze intra- and inter-genomic variation of mouse rDNA repeats, we selectively isolated 25 individual rDNA units using Transformation-Associated Recombination (TAR) cloning. Long-read sequencing and subsequent comparative sequence analysis revealed that each full-length unit comprises an intergenic spacer (IGS) and a ∼13.4 kb long transcribed region encoding the three rRNAs, but with substantial variability in rDNA unit size, ranging from ∼35 to ∼46 kb. Within the transcribed regions of rDNA units, we found 209 variants, 70 of which are in external transcribed spacers (ETSs); but the rDNA size differences are driven primarily by IGS size heterogeneity, due to indels containing repetitive elements and some functional signals such as enhancers. Further evolutionary analysis categorized rDNA units into distinct clusters with characteristic IGS lengths; numbers of enhancers; and presence/absence of two common SNPs in promoter regions, one of which is located within promoter (p)RNA and may influence pRNA folding stability. These characteristic features of IGSs also correlated significantly with 5'ETS variant patterns described previously and associated with differential expression of rDNA units. Our results suggest that variant rDNA units are differentially regulated and open a route to investigate the role of rDNA variation on nucleolar formation and possible associations with pathology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA