Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; : e0024424, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639492

RESUMEN

Antibiotics revolutionized the treatment of bacterial infection and enhanced modern healthcare. While the current global antibiotic resistance crisis is widely acknowledged, the need for a highly trained cohort of scientists to continue and expand efforts to combat this threat has received less attention. We posit that training of pre-doctoral students in the antibiotic resistance field is critical for future efforts in combating this crisis and urge development of training programs that focus on this need.

2.
J Antimicrob Chemother ; 78(7): 1769-1778, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37253051

RESUMEN

OBJECTIVES: Gentamicin is used in several alternative treatments for gonorrhoea. Verified clinical Neisseria gonorrhoeae isolates with gentamicin resistance are mainly lacking and understanding the mechanisms for gonococcal gentamicin resistance is imperative. We selected gentamicin resistance in gonococci in vitro, identified the novel gentamicin-resistance mutations, and examined the biofitness of a high-level gentamicin-resistant mutant. METHODS: Low- and high-level gentamicin resistance was selected in WHO X (gentamicin MIC = 4 mg/L) on gentamicin-gradient agar plates. Selected mutants were whole-genome sequenced. Potential gentamicin-resistance fusA mutations were transformed into WT strains to verify their impact on gentamicin MICs. The biofitness of high-level gentamicin-resistant mutants was examined using a competitive assay in a hollow-fibre infection model. RESULTS: WHO X mutants with gentamicin MICs of up to 128 mg/L were selected. Primarily selected fusA mutations were further investigated, and fusAR635L and fusAM520I + R635L were particularly interesting. Different mutations in fusA and ubiM were found in low-level gentamicin-resistant mutants, while fusAM520I was associated with high-level gentamicin resistance. Protein structure predictions showed that fusAM520I is located in domain IV of the elongation factor-G (EF-G). The high-level gentamicin-resistant WHO X mutant was outcompeted by the gentamicin-susceptible WHO X parental strain, suggesting lower biofitness. CONCLUSIONS: We describe the first high-level gentamicin-resistant gonococcal isolate (MIC = 128 mg/L), which was selected in vitro through experimental evolution. The most substantial increases of the gentamicin MICs were caused by mutations in fusA (G1560A and G1904T encoding EF-G M520I and R635L, respectively) and ubiM (D186N). The high-level gentamicin-resistant N. gonorrhoeae mutant showed impaired biofitness.


Asunto(s)
Gonorrea , Neisseria gonorrhoeae , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Gentamicinas/farmacología , Factor G de Elongación Peptídica , Gonorrea/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana
3.
Nucleic Acids Res ; 49(7): 4155-4170, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33784401

RESUMEN

Mutations within the mtrR gene are commonly found amongst multidrug resistant clinical isolates of Neisseria gonorrhoeae, which has been labelled a superbug by the Centers for Disease Control and Prevention. These mutations appear to contribute to antibiotic resistance by interfering with the ability of MtrR to bind to and repress expression of its target genes, which include the mtrCDE multidrug efflux transporter genes and the rpoH oxidative stress response sigma factor gene. However, the DNA-recognition mechanism of MtrR and the consensus sequence within these operators to which MtrR binds has remained unknown. In this work, we report the crystal structures of MtrR bound to the mtrCDE and rpoH operators, which reveal a conserved, but degenerate, DNA consensus binding site 5'-MCRTRCRN4YGYAYGK-3'. We complement our structural data with a comprehensive mutational analysis of key MtrR-DNA contacts to reveal their importance for MtrR-DNA binding both in vitro and in vivo. Furthermore, we model and generate common clinical mutations of MtrR to provide plausible biochemical explanations for the contribution of these mutations to multidrug resistance in N. gonorrhoeae. Collectively, our findings unveil key biological mechanisms underlying the global stress responses of N. gonorrhoeae.


Asunto(s)
Proteínas Bacterianas , ADN Bacteriano/metabolismo , Farmacorresistencia Bacteriana Múltiple/genética , Neisseria gonorrhoeae , Proteínas Represoras , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Regulación Bacteriana de la Expresión Génica , Mutación , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/metabolismo , Unión Proteica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
4.
Antimicrob Agents Chemother ; 66(5): e0025122, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35465683

RESUMEN

The continued emergence of Neisseria gonorrhoeae isolates which are resistant to first-line antibiotics has reinvigorated interest in alternative therapies such as expanded use of gentamicin (Gen). We hypothesized that expanded use of Gen promotes emergence of gonococci with clinical resistance to this aminoglycoside. To understand how decreased susceptibility of gonococci to Gen might develop, we selected spontaneous low-level Gen-resistant (GenR) mutants (Gen MIC = 32 µg/mL) of the Gen-susceptible strain FA19. Consequently, we identified a novel missense mutation in fusA, which encodes elongation factor G (EF-G), causing an alanine (A) to valine (V) substitution at amino acid position 563 in domain IV of EF-G; the mutant allele was termed fusA2. Transformation analysis showed that fusA2 could increase the Gen MIC by 4-fold. While possession of fusA2 did not impair either in vitro gonococcal growth or protein synthesis, it did result in a fitness defect during experimental infection of the lower genital tract in female mice. Through bioinformatic analysis of whole-genome sequences of 10,634 international gonococcal clinical isolates, other fusA alleles were frequently detected, but genetic studies revealed that they could not decrease Gen susceptibility in a similar manner to fusA2. In contrast to these diverse international fusA alleles, the fusA2-encoded A563V substitution was detected in only a single gonococcal clinical isolate. We hypothesize that the rare occurrence of fusA2 in N. gonorrhoeae clinical isolates is likely due to a fitness cost during infection, but compensatory mutations which alleviate this fitness cost could emerge and promote GenR in global strains.


Asunto(s)
Gonorrea , Neisseria gonorrhoeae , Sustitución de Aminoácidos , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana/genética , Femenino , Gentamicinas/farmacología , Gentamicinas/uso terapéutico , Gonorrea/tratamiento farmacológico , Ratones , Pruebas de Sensibilidad Microbiana , Factor G de Elongación Peptídica
5.
Microbiology (Reading) ; 168(8)2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35916832

RESUMEN

This review focuses on the mechanisms of transcriptional control of an important multidrug efflux pump system (MtrCDE) possessed by Neisseria gonorrhoeae, the aetiological agent of the sexually transmitted infection termed gonorrhoea. The mtrCDE operon that encodes this tripartite protein efflux pump is subject to both cis- and trans-acting transcriptional factors that negatively or positively influence expression. Critically, levels of MtrCDE can influence levels of gonococcal susceptibility to classical antibiotics, host-derived antimicrobials and various biocides. The regulatory systems that control mtrCDE can have profound influences on the capacity of gonococci to resist current and past antibiotic therapy regimens as well as virulence. The emergence, mechanisms of action and clinical significance of the transcriptional regulatory systems that impact mtrCDE expression in gonococci are reviewed here with the aim of linking bacterial antimicrobial resistance with multidrug efflux capability.


Asunto(s)
Antibacterianos , Neisseria gonorrhoeae , Antibacterianos/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana/genética , Regulación Bacteriana de la Expresión Génica , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/metabolismo , Operón , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
6.
PLoS Pathog ; 16(12): e1008602, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33290434

RESUMEN

There is a pressing need for a gonorrhea vaccine due to the high disease burden associated with gonococcal infections globally and the rapid evolution of antibiotic resistance in Neisseria gonorrhoeae (Ng). Current gonorrhea vaccine research is in the stages of antigen discovery and the identification of protective immune responses, and no vaccine has been tested in clinical trials in over 30 years. Recently, however, it was reported in a retrospective case-control study that vaccination of humans with a serogroup B Neisseria meningitidis (Nm) outer membrane vesicle (OMV) vaccine (MeNZB) was associated with reduced rates of gonorrhea. Here we directly tested the hypothesis that Nm OMVs induce cross-protection against gonorrhea in a well-characterized female mouse model of Ng genital tract infection. We found that immunization with the licensed Nm OMV-based vaccine 4CMenB (Bexsero) significantly accelerated clearance and reduced the Ng bacterial burden compared to administration of alum or PBS. Serum IgG and vaginal IgA and IgG that cross-reacted with Ng OMVs were induced by 4CMenB vaccination by either the subcutaneous or intraperitoneal routes. Antibodies from vaccinated mice recognized several Ng surface proteins, including PilQ, BamA, MtrE, NHBA (known to be recognized by humans), PorB, and Opa. Immune sera from both mice and humans recognized Ng PilQ and several proteins of similar apparent molecular weight, but MtrE was only recognized by mouse serum. Pooled sera from 4CMenB-immunized mice showed a 4-fold increase in serum bactericidal50 titers against the challenge strain; in contrast, no significant difference in bactericidal activity was detected when sera from 4CMenB-immunized and unimmunized subjects were compared. Our findings directly support epidemiological evidence that Nm OMVs confer cross-species protection against gonorrhea, and implicate several Ng surface antigens as potentially protective targets. Additionally, this study further defines the usefulness of murine infection model as a relevant experimental system for gonorrhea vaccine development.


Asunto(s)
Protección Cruzada/inmunología , Vacunas Meningococicas/farmacología , Neisseria gonorrhoeae/inmunología , Animales , Antígenos Bacterianos/inmunología , Proteínas de la Membrana Bacteriana Externa/inmunología , Vacunas Bacterianas/inmunología , Estudios de Casos y Controles , Reacciones Cruzadas/inmunología , Femenino , Gonorrea/inmunología , Humanos , Sueros Inmunes/inmunología , Inmunización/métodos , Masculino , Infecciones Meningocócicas/microbiología , Vacunas Meningococicas/inmunología , Vacunas Meningococicas/metabolismo , Ratones , Ratones Endogámicos BALB C , Neisseria meningitidis/inmunología , Neisseria meningitidis Serogrupo B/inmunología , Estudios Retrospectivos , Serogrupo , Vacunación/métodos
7.
Annu Rev Microbiol ; 71: 665-686, 2017 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-28886683

RESUMEN

Gonorrhea, an obligate human infection, is on the rise worldwide and gonococcal strains resistant to many antibiotics are emerging. Appropriate antimicrobial treatment and prevention, including effective vaccines, are urgently needed. To guide investigation, an experimental model of genital tract infection has been developed in female mice to study mechanisms by which Neisseria gonorrhoeae evades host-derived antimicrobial factors and to identify protective and immunosuppressive pathways. Refinements of the animal model have also improved its use as a surrogate host of human infection and accelerated the testing of novel therapeutic and prophylactic compounds against gonococcal infection. Reviewed herein are the (a) history of antibiotic usage and resistance against gonorrhea and the consequences of resistance mechanisms that may increase gonococcal fitness and therefore the potential for spread, (b) use of gonococcal infection in the animal model system to study mechanisms of pathogenesis and host defenses, and


Asunto(s)
Antibacterianos/uso terapéutico , Vacunas Bacterianas/inmunología , Modelos Animales de Enfermedad , Farmacorresistencia Bacteriana , Gonorrea/tratamiento farmacológico , Gonorrea/prevención & control , Neisseria gonorrhoeae/efectos de los fármacos , Animales , Antibacterianos/farmacología , Vacunas Bacterianas/aislamiento & purificación , Descubrimiento de Drogas , Femenino , Gonorrea/microbiología , Ratones , Neisseria gonorrhoeae/inmunología
8.
PLoS Pathog ; 15(12): e1008233, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31860664

RESUMEN

GdhR is a GntR-type regulator of Neisseria gonorrhoeae encoded by a gene (gdhR) belonging to the MtrR regulon, which comprises multiple genes required for antibiotic resistance such as the mtrCDE efflux pump genes. In previous work we showed that loss of gdhR results in enhanced gonococcal fitness in a female mouse model of lower genital tract infection. Here, we used RNA-Seq to perform a transcriptional profiling study to determine the GdhR regulon. GdhR was found to regulate the expression of 2.3% of all the genes in gonococcal strain FA19, of which 39 were activated and 11 were repressed. Within the GdhR regulon we found that lctP, which encodes a unique L-lactate transporter and has been associated with gonococcal pathogenesis, was the highest of GdhR-repressed genes. By using in vitro transcription and DNase I footpriting assays we mapped the lctP transcriptional start site (TSS) and determined that GdhR directly inhibits transcription by binding to an inverted repeat sequence located 9 bases downstream of the lctP TSS. Epistasis analysis revealed that, while loss of lctP increased susceptibility of gonococci to hydrogen peroxide (H2O2) the loss of gdhR enhanced resistance; however, this GdhR-endowed property was reversed in a double gdhR lctP null mutant. We assessed the effect of different carbon sources on lctP expression and found that D-glucose, but not L-lactate or pyruvate, repressed lctP expression within a physiological concentration range but in a GdhR-independent manner. Moreover, we found that adding glucose to the medium enhanced susceptibility of gonococci to hydrogen peroxide. We propose a model for the role of lctP regulation via GdhR and glucose in the pathogenesis of N. gonorrhoeae.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/genética , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/patogenicidad , Factores de Virulencia/genética , Virulencia/genética , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana/genética , Proteínas de Transporte de Membrana/genética , Proteínas Represoras/genética , Factores de Virulencia/metabolismo
9.
BMC Genomics ; 21(1): 116, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-32013864

RESUMEN

BACKGROUND: Multidrug-resistant Neisseria gonorrhoeae strains are prevalent, threatening gonorrhoea treatment globally, and understanding of emergence, evolution, and spread of antimicrobial resistance (AMR) in gonococci remains limited. We describe the genomic evolution of gonococci and their AMR, related to the introduction of antimicrobial therapies, examining isolates from 1928 (preantibiotic era) to 2013 in Denmark. This is, to our knowledge, the oldest gonococcal collection globally. METHODS: Lyophilised isolates were revived and examined using Etest (18 antimicrobials) and whole-genome sequencing (WGS). Quality-assured genome sequences were obtained for 191 viable and 40 non-viable isolates and analysed with multiple phylogenomic approaches. RESULTS: Gonococcal AMR, including an accumulation of multiple AMR determinants, started to emerge particularly in the 1950s-1970s. By the twenty-first century, resistance to most antimicrobials was common. Despite that some AMR determinants affect many physiological functions and fitness, AMR determinants were mainly selected by the use/misuse of gonorrhoea therapeutic antimicrobials. Most AMR developed in strains belonging to one multidrug-resistant (MDR) clade with close to three times higher genomic mutation rate. Modern N. gonorrhoeae was inferred to have emerged in the late-1500s and its genome became increasingly conserved over time. CONCLUSIONS: WGS of gonococci from 1928 to 2013 showed that no AMR determinants, except penB, were in detectable frequency before the introduction of gonorrhoea therapeutic antimicrobials. The modern gonococcus is substantially younger than previously hypothesized and has been evolving into a more clonal species, driven by the use/misuse of antimicrobials. The MDR gonococcal clade should be further investigated for early detection of strains with predispositions to develop and maintain MDR and for initiation of public health interventions.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Neisseria gonorrhoeae/efectos de los fármacos , Neisseria gonorrhoeae/genética , Evolución Molecular , Genómica/métodos , Genotipo , Pruebas de Sensibilidad Microbiana , Neisseria gonorrhoeae/aislamiento & purificación , Filogenia , Secuenciación Completa del Genoma/métodos
10.
J Infect Dis ; 220(2): 294-305, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-30788502

RESUMEN

BACKGROUND: Given the lack of new antimicrobials or a vaccine, understanding the evolutionary dynamics of Neisseria gonorrhoeae is a significant public and global health priority. We investigated the emergence and spread of gonococcal strains with decreased susceptibility to cephalosporins and azithromycin using detailed genomic analyses of gonococcal isolates collected in the United States, 2014-2016. METHODS: We sequenced genomes of 649 isolates collected through the Gonococcal Isolate Surveillance Project. We examined the genetic relatedness of isolates and assessed associations between clades and various genotypic and phenotypic combinations. RESULTS: We identified a large and clonal lineage of strains (MLST ST9363) associated with elevated azithromycin minimum inhibitory concentration (AZIem), characterized by a mosaic mtr locus (C substitution in the mtrR promoter, mosaic mtrR and mtrD). Mutations in 23S rRNA were sporadically distributed among AZIem strains. Another clonal group (MLST ST1901) possessed 7 unique PBP2 patterns, and it shared common mutations in other genes associated with cephalosporin resistance. CONCLUSIONS: Whole-genome sequencing methods can enhance monitoring of antimicrobial resistant gonococcal strains by identifying gonococcal populations containing mutations of concern. These methods could inform the development of point-of-care diagnostic tests designed to determine the specific antibiotic susceptibility profile of a gonococcal infection in a patient.


Asunto(s)
Antibacterianos/uso terapéutico , Azitromicina/uso terapéutico , Cefalosporinas/uso terapéutico , Gonorrea/tratamiento farmacológico , Neisseria gonorrhoeae/efectos de los fármacos , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana/efectos de los fármacos , Evolución Molecular , Genómica , Genotipo , Gonorrea/microbiología , Humanos , Masculino , Pruebas de Sensibilidad Microbiana/métodos , Mutación/efectos de los fármacos , Mutación/genética , Neisseria gonorrhoeae/genética , Fenotipo , Regiones Promotoras Genéticas/efectos de los fármacos , Regiones Promotoras Genéticas/genética , ARN Ribosómico 23S/genética , Estados Unidos , Secuenciación Completa del Genoma/métodos
11.
J Bacteriol ; 201(20)2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31331979

RESUMEN

Neisseria gonorrhoeae responds to host-derived antimicrobials by inducing the expression of the mtrCDE-encoded multidrug efflux pump, which expels microbicides, such as bile salts, fatty acids, and multiple extrinsically administered drugs, from the cell. In the absence of these cytotoxins, the TetR family member MtrR represses the mtrCDE genes. Although antimicrobial-dependent derepression of mtrCDE is clear, the physiological inducers of MtrR are unknown. Here, we report the crystal structure of an induced form of MtrR. In the binding pocket of MtrR, we observed electron density that we hypothesized was N-cyclohexyl-3-aminopropanesulfonic acid (CAPS), a component of the crystallization reagent. Using the MtrR-CAPS structure as an inducer-bound template, we hypothesized that bile salts, which bear significant chemical resemblance to CAPS, are physiologically relevant inducers. Indeed, characterization of MtrR-chenodeoxycholate and MtrR-taurodeoxycholate interactions, both in vitro and in vivo, revealed that these bile salts, but not glyocholate or taurocholate, bind MtrR tightly and can act as bona fide inducers. Furthermore, two residues, W136 and R176, were shown to be important in binding chenodeoxycholate but not taurodeoxycholate, suggesting different binding modes of the bile salts. These data provide insight into a crucial mechanism utilized by the pathogen to overcome innate human defenses.IMPORTANCENeisseria gonorrhoeae causes a significant disease burden worldwide, and a meteoric rise in its multidrug resistance has reduced the efficacy of antibiotics previously or currently approved for therapy of gonorrheal infections. The multidrug efflux pump MtrCDE transports multiple drugs and host-derived antimicrobials from the bacterial cell and confers survival advantage on the pathogen within the host. Transcription of the pump is repressed by MtrR but relieved by the cytosolic influx of antimicrobials. Here, we describe the structure of induced MtrR and use this structure to identify bile salts as physiological inducers of MtrR. These findings provide a mechanistic basis for antimicrobial sensing and gonococcal protection by MtrR through the derepression of mtrCDE expression after exposure to intrinsic and clinically applied antimicrobials.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana Múltiple , Neisseria gonorrhoeae/patogenicidad , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Sitios de Unión , Ácido Quenodesoxicólico/metabolismo , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Neisseria gonorrhoeae/química , Neisseria gonorrhoeae/metabolismo , Unión Proteica , Ácido Taurodesoxicólico/metabolismo
12.
Artículo en Inglés | MEDLINE | ID: mdl-29891604

RESUMEN

The gonococcal NorM efflux pump exports substrates with a cationic moiety, including quaternary ammonium compounds such as berberine (BE) and ethidium bromide (EB) as well as antibiotics such as ciprofloxacin and solithromycin. The norM gene is part of a four-gene operon that is transcribed from a promoter containing a polynucleotide tract of 6 or 7 thymidines (T's) between the -10 and -35 hexamers; the majority of gonococcal strains analyzed in this study contained a T-6 sequence. Primer extension analysis showed that regardless of the length of the poly(T) tract, the same transcriptional start site (TSS) was used for expression of norM Interestingly, the T-6 tract correlated with a higher level of both norM expression and gonococcal resistance to NorM substrates BE and EB. Analysis of expression of genes downstream of norM showed that the product of the tetR-like gene has the capacity to activate expression of norM as well as murB, which encodes an acetylenolpyroylglucosamine reductase predicted to be involved in the early steps of peptidoglycan synthesis. Moreover, loss of the TetR-like transcriptional regulator modestly increased gonococcal susceptibility to NorM substrates EB and BE. We conclude that both cis- and trans-acting regulatory systems can regulate expression of the norM operon and influence levels of gonococcal susceptibility to antimicrobials exported by NorM.


Asunto(s)
Antiinfecciosos/farmacología , Proteínas Bacterianas/metabolismo , Gonorrea/metabolismo , Gonorrea/microbiología , Neisseria gonorrhoeae/efectos de los fármacos , Neisseria gonorrhoeae/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/genética , Neisseria gonorrhoeae/genética , Regiones Promotoras Genéticas/genética
13.
Artículo en Inglés | MEDLINE | ID: mdl-29133551

RESUMEN

Carbapenem-resistant Enterobacteriaceae are urgent threats to global human health. These organisms produce ß-lactamases with carbapenemase activity, such as the metallo-ß-lactamase NDM-1, which is notable due to its association with mobile genetic elements and the lack of a clinically useful inhibitor. Here we examined the ability of copper to inhibit the activity of NDM-1 and explored the potential of a copper coordination complex as a mechanism to efficiently deliver copper as an adjuvant in clinical therapeutics. An NDM-positive Escherichia coli isolate, MS6192, was cultured from the urine of a patient with a urinary tract infection. MS6192 was resistant to antibiotics from multiple classes, including diverse ß-lactams (penicillins, cephalosporins, and carbapenems), aminoglycosides, and fluoroquinolones. In the presence of copper (range, 0 to 2 mM), however, the susceptibility of MS6192 to the carbapenems ertapenem and meropenem increased markedly. In standard checkerboard assays, copper decreased the MICs of ertapenem and meropenem against MS6192 in a dose-dependent manner, suggesting a synergistic mode of action. To examine the inhibitory effect of copper in the absence of other ß-lactamases, the blaNDM-1 gene from MS6192 was cloned and expressed in a recombinant E. coli K-12 strain. Analysis of cell extracts prepared from this strain revealed that copper directly inhibited NDM-1 activity, which was confirmed using purified recombinant NDM-1. Finally, delivery of copper at a low concentration of 10 µM by using the FDA-approved coordination complex copper-pyrithione sensitized MS6192 to ertapenem and meropenem in a synergistic manner. Overall, this work demonstrates the potential use of copper coordination complexes as novel carbapenemase adjuvants.


Asunto(s)
Adyuvantes Farmacéuticos/farmacología , Complejos de Coordinación/farmacología , Cobre/farmacología , Iones/farmacología , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Enterobacteriaceae Resistentes a los Carbapenémicos/efectos de los fármacos , Carbapenémicos/farmacología , Ertapenem/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Humanos , Meropenem/farmacología , Pruebas de Sensibilidad Microbiana/métodos , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/microbiología , beta-Lactamasas/metabolismo , beta-Lactamas/farmacología
15.
Mol Microbiol ; 102(1): 137-51, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27353397

RESUMEN

Neisseria gonorrhoeae produces two transferrin binding proteins, TbpA and TbpB, which together enable efficient iron transport from human transferrin. We demonstrate that expression of the tbp genes is controlled by MisR, a response regulator in the two-component regulatory system that also includes the sensor kinase MisS. The tbp genes were up-regulated in the misR mutant under iron-replete conditions but were conversely down-regulated in the misR mutant under iron-depleted conditions. The misR mutant was capable of transferrin-iron uptake at only 50% of wild-type levels, consistent with decreased tbp expression. We demonstrate that phosphorylated MisR specifically binds to the tbpBA promoter and that MisR interacts with five regions upstream of the tbpB start codon. These analyses confirm that MisR directly regulates tbpBA expression. The MisR binding sites in the gonococcus are only partially conserved in Neisseria meningitidis, which may explain why tbpBA was not MisR-regulated in previous studies using this related pathogen. This is the first report of a trans-acting protein factor other than Fur that can directly contribute to gonococcal tbpBA regulation.


Asunto(s)
Neisseria gonorrhoeae/genética , Proteína A de Unión a Transferrina/genética , Proteína B de Unión a Transferrina/genética , Sitios de Unión , Hierro/metabolismo , Neisseria gonorrhoeae/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Transactivadores/metabolismo , Transferrina/metabolismo , Proteína A de Unión a Transferrina/metabolismo , Proteína B de Unión a Transferrina/metabolismo
16.
Biochim Biophys Acta ; 1848(11 Pt B): 3101-11, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25701234

RESUMEN

Antimicrobial peptides (AMPs) are at the front-line of host defense during infection and play critical roles both in reducing the microbial load early during infection and in linking innate to adaptive immunity. However, successful pathogens have developed mechanisms to resist AMPs. Although considerable progress has been made in elucidating AMP-resistance mechanisms of pathogenic bacteria in vitro, less is known regarding the in vivo significance of such resistance. Nevertheless, progress has been made in this area, largely by using murine models and, in two instances, human models of infection. Herein, we review progress on the use of in vivo infection models in AMP research and discuss the AMP resistance mechanisms that have been established by in vivo studies to contribute to microbial infection. We posit that in vivo infection models are essential tools for investigators to understand the significance to pathogenesis of genetic changes that impact levels of bacterial susceptibility to AMPs. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Farmacorresistencia Bacteriana , Bacterias Gramnegativas/metabolismo , Infecciones por Bacterias Gramnegativas/metabolismo , Bacterias Grampositivas/metabolismo , Infecciones por Bacterias Grampositivas/metabolismo , Animales , Antibacterianos/uso terapéutico , Péptidos Catiónicos Antimicrobianos/inmunología , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Modelos Animales de Enfermedad , Farmacorresistencia Bacteriana/genética , Genotipo , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/inmunología , Bacterias Gramnegativas/patogenicidad , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/prevención & control , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/genética , Bacterias Grampositivas/inmunología , Bacterias Grampositivas/patogenicidad , Infecciones por Bacterias Grampositivas/inmunología , Infecciones por Bacterias Grampositivas/microbiología , Infecciones por Bacterias Grampositivas/prevención & control , Interacciones Huésped-Patógeno , Humanos , Evasión Inmune , Inmunidad Innata , Ratones , Viabilidad Microbiana , Fenotipo , Transducción de Señal
17.
Antimicrob Agents Chemother ; 60(8): 4690-700, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27216061

RESUMEN

During infection, the sexually transmitted pathogen Neisseria gonorrhoeae (the gonococcus) encounters numerous host-derived antimicrobials, including cationic antimicrobial peptides (CAMPs) produced by epithelial and phagocytic cells. CAMPs have both direct and indirect killing mechanisms and help link the innate and adaptive immune responses during infection. Gonococcal CAMP resistance is likely important for avoidance of host nonoxidative killing systems expressed by polymorphonuclear granulocytes (e.g., neutrophils) and intracellular survival. Previously studied gonococcal CAMP resistance mechanisms include modification of lipid A with phosphoethanolamine by LptA and export of CAMPs by the MtrCDE efflux pump. In the related pathogen Neisseria meningitidis, a two-component regulatory system (2CRS) termed MisR-MisS has been shown to contribute to the capacity of the meningococcus to resist CAMP killing. We report that the gonococcal MisR response regulator but not the MisS sensor kinase is involved in constitutive and inducible CAMP resistance and is also required for intrinsic low-level resistance to aminoglycosides. The 4- to 8-fold increased susceptibility of misR-deficient gonococci to CAMPs and aminoglycosides was independent of phosphoethanolamine decoration of lipid A and the levels of the MtrCDE efflux pump and seemed to correlate with a general increase in membrane permeability. Transcriptional profiling and biochemical studies confirmed that expression of lptA and mtrCDE was not impacted by the loss of MisR. However, several genes encoding proteins involved in membrane integrity and redox control gave evidence of being MisR regulated. We propose that MisR modulates the levels of gonococcal susceptibility to antimicrobials by influencing the expression of genes involved in determining membrane integrity.


Asunto(s)
Aminoglicósidos/metabolismo , Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas Bacterianas/metabolismo , Gonorrea/metabolismo , Neisseria gonorrhoeae/metabolismo , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Gonorrea/tratamiento farmacológico , Humanos , Lípido A/metabolismo , Neisseria gonorrhoeae/efectos de los fármacos , Neisseria meningitidis/efectos de los fármacos , Neisseria meningitidis/metabolismo
18.
Clin Microbiol Rev ; 27(3): 587-613, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24982323

RESUMEN

Neisseria gonorrhoeae is evolving into a superbug with resistance to previously and currently recommended antimicrobials for treatment of gonorrhea, which is a major public health concern globally. Given the global nature of gonorrhea, the high rate of usage of antimicrobials, suboptimal control and monitoring of antimicrobial resistance (AMR) and treatment failures, slow update of treatment guidelines in most geographical settings, and the extraordinary capacity of the gonococci to develop and retain AMR, it is likely that the global problem of gonococcal AMR will worsen in the foreseeable future and that the severe complications of gonorrhea will emerge as a silent epidemic. By understanding the evolution, emergence, and spread of AMR in N. gonorrhoeae, including its molecular and phenotypic mechanisms, resistance to antimicrobials used clinically can be anticipated, future methods for genetic testing for AMR might permit region-specific and tailor-made antimicrobial therapy, and the design of novel antimicrobials to circumvent the resistance problems can be undertaken more rationally. This review focuses on the history and evolution of gonorrhea treatment regimens and emerging resistance to them, on genetic and phenotypic determinants of gonococcal resistance to previously and currently recommended antimicrobials, including biological costs or benefits; and on crucial actions and future advances necessary to detect and treat resistant gonococcal strains and, ultimately, retain gonorrhea as a treatable infection.


Asunto(s)
Farmacorresistencia Bacteriana , Gonorrea/epidemiología , Gonorrea/microbiología , Neisseria gonorrhoeae/efectos de los fármacos , Neisseria gonorrhoeae/fisiología , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Interacción Gen-Ambiente , Aptitud Genética , Gonorrea/diagnóstico , Gonorrea/tratamiento farmacológico , Gonorrea/historia , Historia del Siglo XXI , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA