Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 195(1): 580-597, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38366880

RESUMEN

Flower bud formation is a critical process that directly determines yield and fruit quality in fruit crops. Floral induction is modulated by the balance between 2 flowering-related proteins, FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1); however, the mechanisms underlying the establishment and maintenance of this dynamic balance remain largely elusive. Here, we showed that in apple (Malus × domestica Borkh.), MdFT1 is predominantly expressed in spur buds and exhibits an increase in expression coinciding with flower induction; in contrast, MdTFL1 exhibited downregulation in apices during flower induction, suggesting that MdTFL1 has a role in floral repression. Interestingly, both the MdFT1 and MdTFL1 transcripts are directly regulated by transcription factor basic HELIX-LOOP-HELIX48 (MdbHLH48), and overexpression of MdbHLH48 in Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum) results in accelerated flowering. Binding and activation analyses revealed that MdbHLH48 functions as a positive regulator of MdFT1 and a negative regulator of MdTFL1. Further studies established that both MdFT1 and MdTFL1 interact competitively with MdWRKY6 protein to facilitate and inhibit, respectively, MdWRKY6-mediated transcriptional activation of target gene APPLE FLORICAULA/LFY (AFL1, an apple LEAFY-like gene), ultimately regulating apple flower bud formation. These findings illustrate the fine-tuned regulation of flowering by the MdbHLH48-MdFT1/MdTFL1-MdWRKY6 module and provide insights into flower bud formation in apples.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Malus , Proteínas de Plantas , Malus/genética , Malus/metabolismo , Malus/crecimiento & desarrollo , Malus/fisiología , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Plantas Modificadas Genéticamente , Redes Reguladoras de Genes , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/fisiología , Solanum lycopersicum/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
2.
Sensors (Basel) ; 24(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38203117

RESUMEN

For amputees, amputation is a devastating experience. Transfemoral amputees require an artificial lower limb prosthesis as a replacement for regaining their gait functions after amputation. Microprocessor-based transfemoral prosthesis has gained significant importance in the last two decades for the rehabilitation of lower limb amputees by assisting them in performing activities of daily living. Commercially available microprocessor-based knee joints have the needed features but are costly, making them beyond the reach of most amputees. The excessive cost of these devices can be attributed to custom sensing and actuating mechanisms, which require significant development cost, making them beyond the reach of most amputees. This research contributes to developing a cost-effective microprocessor-based transfemoral prosthesis by integrating off-the-shelf sensing and actuating mechanisms. Accordingly, a three-level control architecture consisting of top, middle, and low-level controllers was developed for the proposed prosthesis. The top-level controller is responsible for identifying the amputee intent and mode of activity. The mid-level controller determines distinct phases in the activity mode, and the low-level controller was designed to modulate the damping across distinct phases. The developed prosthesis was evaluated on unilateral transfemoral amputees. Since off-the-shelf sensors and actuators are used in i-Inspire, various trials were conducted to evaluate the repeatability of the sensory data. Accordingly, the mean coefficients of correlation for knee angle, force, and inclination were computed at slow and medium walking speeds. The obtained values were, respectively, 0.982 and 0.946 for knee angle, 0.942 and 0.928 for knee force, and 0.825 and 0.758 for knee inclination. These results confirmed that the data are highly correlated with minimum covariance. Accordingly, the sensors provide reliable and repeatable data to the controller for mode detection and intent recognition. Furthermore, the knee angles at self-selected walking speeds were recorded, and it was observed that the i-Inspire Knee maintains a maximum flexion angle between 50° and 60°, which is in accordance with state-of-the-art microprocessor-based transfemoral prosthesis.


Asunto(s)
Actividades Cotidianas , Articulación de la Rodilla , Humanos , Articulación de la Rodilla/cirugía , Extremidad Inferior , Amputación Quirúrgica , Microcomputadores
3.
BMC Plant Biol ; 23(1): 28, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36635619

RESUMEN

BACKGROUND: Multiple MYB transcription factors (TFs) are involved in the regulation of plant coloring. Betalain is a kind of natural plant pigment and its biosynthesis is regulated by a number of enzymes. Despite this, little is known about the molecular properties and roles of MYB TFs in pitaya betalain biosynthesis. RESULTS: In the present study, we identified a 1R-MYB gene, HuMYB132, which is preferentially expressed in red-pulp pitaya at the mature stage. It was clustered with Arabidopsis R-R-type genes and had two DNA-binding domains and a histidine-rich region. The expression assays in N. benthamiana and yeast indicated that HuMYB132 is a nucleus-localized protein with transcriptional activation activity. Dual luciferase reporter assay and electrophoretic mobility shift assays (EMSA) demonstrated that HuMYB132 could promote the transcriptional activities of HuADH1, HuCYP76AD1-1, and HuDODA1 by binding to their promoters. Silencing HuMYB132 reduced betalain accumulation and the expression levels of betalain biosynthetic genes in pitaya pulps. CONCLUSIONS: According to our findings, HuMYB132, a R-R type member of 1R-MYB TF subfamily, positively regulates pitaya betalain biosynthesis by regulating the expression of HuADH1, HuCYP76AD1-1, and HuDODA1. The present study provides a new theoretical reference for the management of pitaya betalain biosynthesis and also provides an essential basis for future regulation of betalain biosynthesis in Hylocereus.


Asunto(s)
Arabidopsis , Betalaínas , Factores de Transcripción/metabolismo , Regiones Promotoras Genéticas/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
4.
Physiol Plant ; 175(3): e13923, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37133873

RESUMEN

The SQUAMOSA promoter binding protein-like (SPL) gene family is a unique family of plant-specific transcription factors (TFs), which plays vital roles in a variety of plant biological processes. Its role in betalain biosynthesis in Hylocereus undantus; however, is still unclear. Here, we report a total of 16 HuSPL genes from the pitaya genome, which were unevenly distributed among nine chromosomes. The HuSPL genes were clustered into seven groups, and most HuSPLs within the same group shared similar exon-intron structures and conserved motifs. Eight segment replication events in the HuSPL gene family were the main driving force behind the gene family expansion. Nine of the HuSPL genes had potential target sites for Hmo-miR156/157b. Hmo-miR156/157b-targeted HuSPLs exhibited differential expression patterns compared with constitutive expression patterns of most Hmo-miR156/157b-nontargeted HuSPLs. The expression of Hmo-miR156/157b gradually increased during fruit maturation, while the expression of Hmo-miR156/157b-targeted HuSPL5/11/14 gradually decreased. In addition, the lowest expression level of Hmo-miR156/157b-targeted HuSPL12 was detected 23rd day after flowering, when the middle pulps started to turn red. HuSPL5, HuSPL11, HuSPL12, and HuSPL14 were nucleus-localized proteins. HuSPL12 could inhibit the expression of HuWRKY40 by binding to its promoter. Results from yeast two-hybrid and bimolecular fluorescence complementation assays showed that HuSPL12 could interact with HuMYB1, HuMYB132, or HuWRKY42 TFs responsible for betalain biosynthesis. The results of the present study provide an essential basis for future regulation of betalain accumulation in pitaya.


Asunto(s)
MicroARNs , Proteínas de Plantas , Proteínas de Plantas/metabolismo , MicroARNs/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regiones Promotoras Genéticas/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Regulación de la Expresión Génica de las Plantas
5.
Surg Endosc ; 37(7): 5313-5319, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36991264

RESUMEN

BACKGROUND: Preoperative HbA1c has been associated with an increased incidence of postoperative morbidity and mortality after abdominal and cardiovascular surgery. The literature on bariatric surgery is inconclusive and guidelines recommend postponement of surgery when HbA1c is above an arbitrary threshold (≥ 8.5%). In this study, we sought to understand the impact of preoperative HbA1c on early and late postoperative complications. METHODS: We performed a retrospective analysis of prospectively collected data on obese patients with diabetes who underwent laparoscopic bariatric surgery. Patients were categorized into three groups according to their preoperative HbA1c level: < 6.5% (group 1), 6.5-8.4% (group 2) and ≥ 8.5% (group 3). Primary outcomes were early and late postoperative complications (< and > 30 days, respectively) that were differentiated based on severity (major/minor). Secondary outcomes were length of stay (LOS), duration of surgery, and rate of readmission. RESULTS: In total, 6798 patients underwent laparoscopic bariatric surgery from 2006 to 2016, of which 1021 (15%) patients had Type 2 Diabetes (T2D). Complete data with a median follow-up of 45 months (3-120) were available for 914 patients with HbA1c < 6.5% (n = 227, 24.9%), 6.5-8.4% (n = 532, 58.5%) and ≥ 8.5% (n = 152, 16.6%). Early major surgical complication rate was similar across the groups ranging from 2.6 to 3.3%. No associations between high preoperative HbA1c and late complications-medical as well as surgical-was observed. Groups 2 and 3 had statistically significant more pronounced inflammatory status. LOS (1.8-1.9 days), readmission rates (1.7-2.0%) and surgical time was similar across the three groups. CONCLUSION: Elevated HbA1c is not associated with more early or late postoperative complications, longer LOS, longer surgical time or higher rates of readmission.


Asunto(s)
Cirugía Bariátrica , Diabetes Mellitus Tipo 2 , Obesidad Mórbida , Humanos , Diabetes Mellitus Tipo 2/cirugía , Hemoglobina Glucada , Estudios Retrospectivos , Cirugía Bariátrica/efectos adversos , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Obesidad Mórbida/complicaciones , Obesidad Mórbida/cirugía , Resultado del Tratamiento
6.
Sensors (Basel) ; 23(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38067728

RESUMEN

Force myography (FMG) represents a promising alternative to surface electromyography (EMG) in the context of controlling bio-robotic hands. In this study, we built upon our prior research by introducing a novel wearable armband based on FMG technology, which integrates force-sensitive resistor (FSR) sensors housed in newly designed casings. We evaluated the sensors' characteristics, including their load-voltage relationship and signal stability during the execution of gestures over time. Two sensor arrangements were evaluated: arrangement A, featuring sensors spaced at 4.5 cm intervals, and arrangement B, with sensors distributed evenly along the forearm. The data collection involved six participants, including three individuals with trans-radial amputations, who performed nine upper limb gestures. The prediction performance was assessed using support vector machines (SVMs) and k-nearest neighbor (KNN) algorithms for both sensor arrangments. The results revealed that the developed sensor exhibited non-linear behavior, and its sensitivity varied with the applied force. Notably, arrangement B outperformed arrangement A in classifying the nine gestures, with an average accuracy of 95.4 ± 2.1% compared to arrangement A's 91.3 ± 2.3%. The utilization of the arrangement B armband led to a substantial increase in the average prediction accuracy, demonstrating an improvement of up to 4.5%.


Asunto(s)
Gestos , Dispositivos Electrónicos Vestibles , Humanos , Extremidad Superior , Miografía/métodos , Electromiografía/métodos , Mano , Algoritmos
7.
Sensors (Basel) ; 23(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36904919

RESUMEN

Using force myography (FMG) to monitor volumetric changes in limb muscles is a promising and effective alternative for controlling bio-robotic prosthetic devices. In recent years, there has been a focus on developing new methods to improve the performance of FMG technology in the control of bio-robotic devices. This study aimed to design and evaluate a novel low-density FMG (LD-FMG) armband for controlling upper limb prostheses. The study investigated the number of sensors and sampling rate for the newly developed LD-FMG band. The performance of the band was evaluated by detecting nine gestures of the hand, wrist, and forearm at varying elbow and shoulder positions. Six subjects, including both fit and amputated individuals, participated in this study and completed two experimental protocols: static and dynamic. The static protocol measured volumetric changes in forearm muscles at the fixed elbow and shoulder positions. In contrast, the dynamic protocol included continuous motion of the elbow and shoulder joints. The results showed that the number of sensors significantly impacts gesture prediction accuracy, with the best accuracy achieved on the 7-sensor FMG band arrangement. Compared to the number of sensors, the sampling rate had a lower influence on prediction accuracy. Additionally, variations in limb position greatly affect the classification accuracy of gestures. The static protocol shows an accuracy above 90% when considering nine gestures. Among dynamic results, shoulder movement shows the least classification error compared to elbow and elbow-shoulder (ES) movements.


Asunto(s)
Gestos , Extremidad Superior , Humanos , Electromiografía/métodos , Miografía/métodos , Mano/fisiología , Movimiento
8.
Int J Mol Sci ; 24(18)2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37762287

RESUMEN

Pitaya (Hylocereus spp.) is a member of the cactus family that is native to Central and South America but is now cultivated throughout the sub-tropical and tropical regions of the world. It is of great importance due to its nutritional, ornamental, coloring, medicinal, industrial, and high consumption values. In order to effectively utilize and develop the available genetic resources, it is necessary to appreciate and understand studies pertaining to the usage, origin, nutrition, diversity, evaluation, characterization, conservation, taxonomy, and systematics of the genus Hylocereus. Additionally, to gain a basic understanding of the biology of the plant, this review has also discussed how biotechnological tools, such as cell and tissue culture, micropropagation (i.e., somatic embryogenesis, organogenesis, somaclonal variation, mutagenesis, androgenesis, gynogenesis, and altered ploidy), virus-induced gene silencing, and molecular marker technology, have been used to enhance pitaya germplasm.

9.
Int J Mol Sci ; 24(16)2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37629062

RESUMEN

The sugar composition and content of fruit have a significant impact on their flavor and taste. In pitaya, or dragon fruit, sweetness is a crucial determinant of fruit taste and consumer preference. The sugars will eventually be exported transporters (SWEETs), a novel group of sugar transporters that have various physiological functions, including phloem loading, seed filling, nectar secretion, and fruit development. However, the role of SWEETs in sugar accumulation in pitaya fruit is not yet clear. Here, we identified 19 potential members (HuSWEET genes) of the SWEET family in pitaya and analyzed their conserved motifs, physiochemical characteristics, chromosomal distribution, gene structure, and phylogenetic relationship. Seven highly conserved α-helical transmembrane domains (7-TMs) were found, and the HuSWEET proteins can be divided into three clades based on the phylogenetic analysis. Interestingly, we found two HuSWEET genes, HuSWEET12a and HuSWEET13d, that showed strong preferential expressions in fruits and an upward trend during fruit maturation, suggesting they have key roles in sugar accumulation in pitaya. This can be further roughly demonstrated by the fact that transgenic tomato plants overexpressing HuSWEET12a/13d accumulated high levels of sugar in the mature fruit. Together, our result provides new insights into the regulation of sugar accumulation by SWEET family genes in pitaya fruit, which also set a crucial basis for the further functional study of the HuSWEETs.


Asunto(s)
Cactaceae , Azúcares , Filogenia , Cactaceae/genética , Transporte Biológico , Frutas/genética , Proteínas de Transporte de Membrana , Plantas Modificadas Genéticamente
10.
Int J Mol Sci ; 23(18)2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36142481

RESUMEN

The WRKY gene family is a plant-specific transcription factor (TF) that regulates many physiological processes and (a) biotic stress responses. Despite this, little is known about the molecular properties and roles of WRKY TFs in pitaya betalain biosynthesis. Here we report the identification of 70 WRKY in Hylocereus undatus, their gene structure, locations on each chromosome, systematic phylogenetic analysis, conserved motif analysis, and synteny of HuWRKY genes. HmoWRKY42 is a Group IIb WRKY protein and contains a coiled-coil motif, a WRKY domain and a C2H2 zinc-finger motif (CX5CX23HXH). Results from yeast one-hybrid and transient dual-luciferase assays showed that HmoWRKY42 was a transcriptional repressor and could repress HmocDOPA5GT1 expression by binding to its promoter. Yeast two-hybrid assays showed that HmoWRKY42 could interact with itself to form homodimers. Knocking out the coiled-coil motif of HmoWRKY42 prevented its self-interaction and prevented it from binding to the HmocDOPA5GT1 promoter. Knocking out the WRKY domain and C2H2 zinc-finger motif sequence of HmoWRKY42 also prevented it from binding to the HmocDOPA5GT1 promoter. The coiled-coil motif, the WRKY domain and the C2H2 zinc finger motif are key motifs for the binding of HmoWRKY42 to the HmocDOPA5GT1 promoter. HmoWRKY42 is localized in the nucleus and possesses trans-activation ability responsible for pitaya betalain biosynthesis by repressing the transcription of HmocDOPA5GT1. As far as we know, no reports are available on the role of HmoWRKY42 in pitaya betalain biosynthesis. The results provide an important foundation for future analyses of the regulation and functions of the HuWRKY gene family.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Betalaínas , Filogenia , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/metabolismo , Zinc/metabolismo
11.
BMC Plant Biol ; 21(1): 543, 2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34800975

RESUMEN

BACKGROUND: In plants, histone modification (HM) genes participate in various developmental and defense processes. Gramineae plants (e.g., Triticum aestivum, Hordeum vulgare, Sorghum bicolor, Setaria italica, Setaria viridis, and Zea mays) are important crop species worldwide. However, little information on HM genes is in Gramineae species. RESULTS: Here, we identified 245 TaHMs, 72 HvHMs, 84 SbHMs, 93 SvHMs, 90 SiHMs, and 90 ZmHMs in the above six Gramineae species, respectively. Detailed information on their chromosome locations, conserved domains, phylogenetic trees, synteny, promoter elements, and gene structures were determined. Among the HMs, most motifs were conserved, but several unique motifs were also identified. Our results also suggested that gene and genome duplications potentially impacted the evolution and expansion of HMs in wheat. The number of orthologous gene pairs between rice (Oryza sativa) and each Gramineae species was much greater than that between Arabidopsis and each Gramineae species, indicating that the dicotyledons shared common ancestors. Moreover, all identified HM gene pairs likely underwent purifying selection based on to their non-synonymous (Ka)/synonymous (Ks) nucleotide substitutions. Using published transcriptome data, changes in TaHM gene expression in developing wheat grains treated with brassinosteroid, brassinazole, or activated charcoal were investigated. In addition, the transcription models of ZmHMs in developing maize seeds and after gibberellin treatment were also identified. We also examined plant stress responses and found that heat, drought, salt, insect feeding, nitrogen, and cadmium stress influenced many TaHMs, and drought altered the expression of several ZmHMs. Thus, these findings indicate their important functions in plant growth and stress adaptations. CONCLUSIONS: Based on a comprehensive analysis of Gramineae HMs, we found that TaHMs play potential roles in grain development, brassinosteroid- and brassinazole-mediated root growth, activated charcoal-mediated root and leaf growth, and biotic and abiotic adaptations. Furthermore, ZmHMs likely participate in seed development, gibberellin-mediated leaf growth, and drought adaptation.


Asunto(s)
Adaptación Fisiológica/genética , Código de Histonas , Poaceae/genética , Triticum/crecimiento & desarrollo , Triticum/genética , Zea mays/crecimiento & desarrollo , Zea mays/genética , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Estudio de Asociación del Genoma Completo , Genotipo , Filogenia
12.
Neuroimage ; 220: 117106, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32615253

RESUMEN

There is an urgent need for better detection and understanding of vascular abnormalities at the micro-level, where critical vascular nourishment and cellular metabolic changes occur. This is especially the case for structures such as the midbrain where both the feeding and draining vessels are quite small. Being able to monitor and diagnose vascular changes earlier will aid in better understanding the etiology of the disease and in the development of therapeutics. In this work, thirteen healthy volunteers were scanned with a dual echo susceptibility weighted imaging (SWI) sequence, with a resolution of 0.22 â€‹× â€‹0.44 â€‹× â€‹1 â€‹mm3 at 3T. Ultra-small superparamagnetic iron oxides (USPIO) were used to induce an increase in susceptibility in both arteries and veins. Although the increased vascular susceptibility enhances the visibility of small subvoxel vessels, the accompanying strong signal loss of the large vessels deteriorates the local tissue contrast. To overcome this problem, the SWI data were acquired at different time points during a gradual administration (final concentration â€‹= â€‹4 â€‹mg/kg) of the USPIO agent, Ferumoxytol, and the data was processed to combine the SWI data dynamically, in order to see through these blooming artifacts. The major vessels and their tributaries (such as the collicular artery, peduncular artery, peduncular vein and the lateral mesencephalic vein) were identified on the combined SWI data using arterio-venous maps. Dynamically combined SWI data was then compared with previous histological work to validate that this protocol was able to detect small vessels on the order of 50 â€‹µm-100 â€‹µm. A complex division-based phase unwrapping was also employed to improve the quality of quantitative susceptibility maps by reducing the artifacts due to aliased voxels at the vessel boundaries. The smallest detectable vessel size was then evaluated by revisiting numerical simulations, using estimated true susceptibilities for the basal vein and the posterior cerebral artery in the presence of Ferumoxytol. These simulations suggest that vessels as small as 50 â€‹µm should be visible with the maximum dose of 4 â€‹mg/kg.


Asunto(s)
Arterias/diagnóstico por imagen , Angiografía por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/métodos , Mesencéfalo/diagnóstico por imagen , Venas/diagnóstico por imagen , Adulto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Mesencéfalo/irrigación sanguínea , Persona de Mediana Edad , Adulto Joven
13.
Plant Cell Physiol ; 60(8): 1702-1721, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31077318

RESUMEN

In plants, DNA methylation (i.e. chromatin modification) is important for various biological processes, including growth, development and flowering. Because 'Fuji' apple trees are alternate bearing and have a long ripening period and poor-quality flower buds, we used bud types with diverse flowering capabilities to investigate the epigenetic regulatory mechanisms influencing flower bud formation. We examined the DNA methylation changes and the transcriptional responses in the selected apple bud types. We observed that in the apple genome, approximately 79.5%, 67.4% and 23.7% of the CG, CHG and CHH sequences are methylated, respectively. For each sequence context, differentially methylated regions exhibited distinct methylation patterns among the analyzed apple bud types. Global methylation and transcriptional analyses revealed that nonexpressed genes or genes expressed at low levels were highly methylated in the gene-body regions, suggesting that gene-body methylation is negatively correlated with gene expression. Moreover, genes with methylated promoters were more highly expressed than genes with unmethylated promoters, implying promoter methylation and gene expression are positively correlated. Additionally, flowering-related genes (e.g. SOC1, AP1 and SPLs) and some transcription factor genes (e.g. GATA, bHLH, bZIP and WOX) were highly expressed in spur buds (highest flowering rate), but were associated with low methylation levels in the gene-body regions. Our findings indicate a potential correlation between DNA methylation and gene expression in apple buds with diverse flowering capabilities, suggesting an epigenetic regulatory mechanism influences apple flower bud formation.


Asunto(s)
Flores/fisiología , Malus/genética , Malus/fisiología , Proteínas de Plantas/metabolismo , Análisis de Secuencia de ARN/métodos , Metilación de ADN/genética , Metilación de ADN/fisiología , Flores/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
14.
Breast Cancer Res Treat ; 177(3): 629-639, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31325074

RESUMEN

PURPOSE: The importance of breast cancer screening has long been known. Unfortunately, there is no imaging modality for screening women with dense breasts that is both sensitive and without concerns regarding potential side effects. The purpose of this study is to explore the possibility of combined diffusion-weighted imaging and turbo inversion recovery magnitude MRI (DWI + TIRM) to overcome the difficulty of detection sensitivity and safety. METHODS: One hundred and seventy-six breast lesions from 166 women with dense breasts were retrospectively evaluated. The lesion visibility, area under the curve (AUC), sensitivity and specificity of cancer detection by MG, DWI + TIRM, and clinical MRI were evaluated and compared. MG plus clinical MRI served as the gold standard for lesion detection and pathology served as the gold standard for cancer detection. RESULTS: Lesion visibility of DWI + TIRM (96.6%) was significantly superior to MG (67.6%) in women with dense breasts (p < 0.001). There was no significant difference compared with clinical MRI. DWI + TIRM showed higher accuracy (AUC = 0.935) and sensitivity (93.68%) for breast cancer detection than MG (AUC = 0.783, sensitivity = 46.32%), but was comparable to clinical MRI (AUC = 0.944, sensitivity = 93.68%). The specificity of DWI + TIRM (83.95%) was lower than MG (98.77%), but higher than clinical MRI (77.78%). CONCLUSIONS: DWI combined with TIRM could be a safe, sensitive, and practical alternative for screening women with dense breasts.


Asunto(s)
Densidad de la Mama , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/epidemiología , Imagen por Resonancia Magnética , Glándulas Mamarias Humanas/diagnóstico por imagen , Glándulas Mamarias Humanas/patología , Adulto , Anciano , Anciano de 80 o más Años , Área Bajo la Curva , Femenino , Humanos , Mamografía , Tamizaje Masivo , Persona de Mediana Edad , Clasificación del Tumor , Curva ROC , Estudios Retrospectivos , Sensibilidad y Especificidad , Adulto Joven
15.
Breast Cancer Res Treat ; 178(1): 249-250, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31432363

RESUMEN

In the original version of the article, the image of Figure 2 was erroneously duplicated as Figure 4. The correct version of Figure 4 is given below. The original article has been corrected.

16.
Plant Cell Physiol ; 59(11): 2288-2307, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30137602

RESUMEN

Guaranteeing successful flowering is very important in economic plant species, especially apple (Malus domestica Borkh.), which is difficult to induce to flower. However, the gene expression and networks involved in flowering have not been totally characterized. Here, we employed mRNA and microRNA (miRNA) sequencing to understand the different responses to gibberellin- and its inhibitor paclobutrazol- (PAC) mediated flower induction. Significant opposite cytological and morphological changes were observed in treated terminal buds, which led to a reduced flowering rate under gibberellin and an increased flowering rate under PAC. We also found that the differentially expressed mRNAs, miRNAs and miRNA target genes participated in different biological networks including hormones, photosynthesis, redox state and other metabolic processes, which provided important clues to understand the complex networks involved in apple flower induction. Additionally, we subsequently focused on one important candidate, MdSPL3, which is one of 31 apple SPL gene family members and whose transcription was inhibited by gibberellin but promoted by PAC. Functional investigation showed that MdSPL3 was located in the nucleus, and ectopic MdSPL3 activated floral meristem identity genes, promoted the formation of floral primordia and led to an earlier flowering phenotype in Arabidopsis. Our research identified critical mRNA and miRNA responsive to gibberellin or PAC, and provided a candidate framework for flower induction. This carefully orchestrated regulatory cross-talk highlighted potential targets for developing regulatory techniques and genetic improvement of flower induction in apple.


Asunto(s)
Flores/crecimiento & desarrollo , Giberelinas/metabolismo , Malus/metabolismo , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Triazoles/farmacología , Flores/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Giberelinas/antagonistas & inhibidores , Giberelinas/fisiología , Malus/efectos de los fármacos , Malus/genética , Malus/crecimiento & desarrollo , Filogenia , Transcriptoma
17.
BMC Plant Biol ; 18(1): 370, 2018 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-30577771

RESUMEN

BACKGROUND: Floral induction is an important stage in the apple tree life cycle. In 'Nagafu No. 2', which was derived from a 'Fuji' bud sport, flower bud formation is associated with serious problems, such as fewer and inferior flower buds, a long juvenile phase, and an alternate bearing phenotype. Moreover, the molecular regulatory mechanisms underlying apple floral induction remain unknown. To characterize these mechanisms, we compared the RNA-sequencing-based transcriptome profiles of buds during floral induction in profusely flowering 'Qinguan' and weakly flowering 'Nagafu No. 2' apple varieties. RESULTS: Genes differentially expressed between the buds of the two varieties were mainly related to carbohydrate, fatty acid, and lipid pathways. Additionally, the steady up-regulated expression of genes related to the fatty acid and lipid pathways and the down-regulated expression of starch synthesis-related genes in the carbon metabolic pathway of 'Qinguan' relative to 'Nagafu No. 2' were observed to contribute to the higher flowering rate of 'Qinguan'. Additionally, global gene expression profiling revealed that genes related to cytokinin, indole-3-acetic acid, and gibberellin synthesis, signalling, and responses (i.e., factors contributing to cell division and differentiation and bud growth) were significantly differentially expressed between the two varieties. The up-regulated expression of genes involved in abscisic acid and salicylic acid biosynthesis via shikimate pathways as well as jasmonic acid production through fatty acid pathways in 'Qinguan' buds were also revealed to contribute to the floral induction and relatively high flowering rate of this variety. The differential expression of transcription factor genes (i.e., SPL, bZIP, IDD, and MYB genes) involved in multiple biological processes was also observed to play key roles in floral induction. Finally, important flowering genes (i.e., FT, FD, and AFL) were significantly more highly expressed in 'Qinguan' buds than in 'Nagafu No. 2' buds during floral induction. CONCLUSIONS: A complex genetic network of regulatory mechanisms involving carbohydrate, fatty acid, lipid, and hormone pathways may mediate the induction of apple tree flowering.


Asunto(s)
Flores/genética , Malus/genética , ARN de Planta/genética , Metabolismo de los Hidratos de Carbono/genética , Ácidos Grasos/metabolismo , Flores/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Metabolismo de los Lípidos/genética , Malus/crecimiento & desarrollo , Malus/metabolismo , Redes y Vías Metabólicas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Brotes de la Planta/metabolismo , ARN de Planta/fisiología , Análisis de Secuencia de ARN , Transducción de Señal , Transcriptoma/genética
18.
ScientificWorldJournal ; 2014: 841549, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24592190

RESUMEN

Laser direct metal deposition (LDMD) has developed from a prototyping to a single metal manufacturing tool. Its potential for creating multimaterial and functionally graded structures is now beginning to be explored. This work is a first part of a study in which a single layer of Inconel 718 is deposited on Ti-6Al-4V substrate. Single layer tracks were built at a range of powder mass flow rates using a coaxial nozzle and 1.5 kW diode laser operating in both continuous and pulsed beam modes. This part of the study focused on the experimental findings during the deposition of Inconel 718 powder on Ti-6Al-4V substrate. Scanning electron microscopy (SEM) and X-ray diffraction analysis were performed for characterization and phase identification. Residual stress measurement had been carried out to ascertain the effects of laser pulse parameters on the crack development during the deposition process.


Asunto(s)
Aleaciones/química , Rayos Láser , Aluminio/química , Titanio/química , Vanadio/química
19.
Plants (Basel) ; 13(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38475546

RESUMEN

Elucidation of the genetic foundation governing crucial traits in pitaya flowers is imperative for enhancing both the ornamental and economic values. In this study, the dynamic variation in flower genetics, segregation variation patterns, and a mixed inheritance model of the major and multigene flower traits of 'Dahong' and 'Honghuaqinglong' pitayas and their progenies were explored. The results showed that the main traits of flowers exhibited varying degrees of variation among the reciprocal F1 hybrids, with the data exhibiting the characteristics of quantitative traits. The betalain content, petal number, and stigma number exhibited values below the median values of the parents, suggesting a genetic inclination towards lower values. Perianth width, calyx tube width, petal number, and stigma number had the same genetic effects and significant correlation. Stigma-related traits had a clear maternal inheritance tendency. The heritability of flower length, stigma relative to anther distance, and petal betalain content was governed by two pairs of additive-dominant major genes. Perianth width, calyx tube width, petal number, and stigma number all conformed to the model of two pairs of equal-additive-dominant major genes. This study provides valuable information for parental selection, cross-breeding, and the enhancement of pitaya varieties to meet market preferences and environmental conditions.

20.
Obes Surg ; 33(1): 293-302, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36459358

RESUMEN

BACKGROUND: Weight loss failure or weight regain may occur after Roux-en-Y gastric bypass (RYGB). Revisional surgery includes distalization. However, few studies have looked at the associations between the total alimentary limb length (TALL) and weight loss outcomes, none with long-term results. OBJECTIVES: Peri- and postoperative outcomes were assessed after employing TALL of either 250 cm or 300 cm in the failed RYGB. METHODS: This study is a retrospective cohort analysis of 90 patients that underwent laparoscopic distalization between January 2006 and January 2016 due to failed RYBG. The index RYGB was modified to TALL of 250 cm (n = 48) or of 300 cm (n = 42) which entailed elongating the bilio-pancreatic limb (BPL) and transposing the Roux limb (RL) to a common limb (CL) of 100 cm and 150 cm, respectively. Long-term weight loss outcomes along with nutritional and vitamin status were analyzed. RESULTS: Preoperative BMI at distalization was 38.6 kg/m2. After 8 years, excess weight loss (EWL) was 61.8%. No differences between the two groups were seen in weight loss outcomes or early surgical complication rates (6.7%). However, more vitamin and nutritional deficiencies were present in the TALL 250-cm group (50.0% and 35.4%, respectively) versus the TALL 300-cm group (33.3% and 14.3% respectively), which led to laparoscopic revision in 27 patients by lengthening the TALL with 100 cm. Patients with weight regain after index RYGB had in average 59.9% higher EWL than patients with EWL failure. CONCLUSION: Distalization of the failed RYGBP is safe and effective, but TALL should not be shorter than 300 cm (and CL 150 cm) due to high rates of malnutrition. Adequate supplementation and long-term follow-up are mandatory to prevent serious malnutrition.


Asunto(s)
Derivación Gástrica , Laparoscopía , Desnutrición , Obesidad Mórbida , Humanos , Derivación Gástrica/métodos , Obesidad Mórbida/cirugía , Estudios Retrospectivos , Índice de Masa Corporal , Desnutrición/cirugía , Vitaminas , Aumento de Peso , Pérdida de Peso , Reoperación/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA