Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(42): 20984-20990, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31570616

RESUMEN

Plants, algae, and cyanobacteria fix carbon dioxide to organic carbon with the Calvin-Benson (CB) cycle. Phosphoribulokinase (PRK) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) are essential CB-cycle enzymes that control substrate availability for the carboxylation enzyme Rubisco. PRK consumes ATP to produce the Rubisco substrate ribulose bisphosphate (RuBP). GAPDH catalyzes the reduction step of the CB cycle with NADPH to produce the sugar glyceraldehyde 3-phosphate (GAP), which is used for regeneration of RuBP and is the main exit point of the cycle. GAPDH and PRK are coregulated by the redox state of a conditionally disordered protein CP12, which forms a ternary complex with both enzymes. However, the structural basis of CB-cycle regulation by CP12 is unknown. Here, we show how CP12 modulates the activity of both GAPDH and PRK. Using thermophilic cyanobacterial homologs, we solve crystal structures of GAPDH with different cofactors and CP12 bound, and the ternary GAPDH-CP12-PRK complex by electron cryo-microscopy, we reveal that formation of the N-terminal disulfide preorders CP12 prior to binding the PRK active site, which is resolved in complex with CP12. We find that CP12 binding to GAPDH influences substrate accessibility of all GAPDH active sites in the binary and ternary inhibited complexes. Our structural and biochemical data explain how CP12 integrates responses from both redox state and nicotinamide dinucleotide availability to regulate carbon fixation.


Asunto(s)
Proteínas Bacterianas/química , Cianobacterias/enzimología , Gliceraldehído-3-Fosfato Deshidrogenasas/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fotosíntesis/efectos de la radiación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cianobacterias/química , Cianobacterias/genética , Cianobacterias/metabolismo , Gliceraldehído 3-Fosfato/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Luz , NADP/química , NADP/metabolismo , Oxidación-Reducción/efectos de la radiación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Unión Proteica , Ribulosa-Bifosfato Carboxilasa/genética , Ribulosa-Bifosfato Carboxilasa/metabolismo , Thermosynechococcus
2.
J Biol Chem ; 288(17): 11751-60, 2013 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-23467413

RESUMEN

Lipopolysaccharides (LPS) of Bordetella pertussis are important modulators of the immune system. Interaction of the lipid A region of LPS with the Toll-like receptor 4 (TLR4) complex causes dimerization of TLR4 and activation of downstream nuclear factor κB (NFκB), which can lead to inflammation. We have previously shown that two strains of B. pertussis, BP338 (a Tohama I-derivative) and 18-323, display two differences in lipid A structure. 1) BP338 can modify the 1- and 4'-phosphates by the addition of glucosamine (GlcN), whereas 18-323 cannot, and 2) the C3' acyl chain in BP338 is 14 carbons long, but only 10 or 12 carbons long in 18-323. In addition, BP338 lipid A can activate TLR4 to a greater extent than 18-323 lipid A. Here we set out to determine the genetic reasons for the differences in these lipid A structures and the contribution of each structural difference to the ability of lipid A to activate TLR4. We show that three genes of the lipid A GlcN modification (Lgm) locus, lgmA, lgmB, and lgmC (previously locus tags BP0399-BP0397), are required for GlcN modification and a single amino acid difference in LpxA is responsible for the difference in C3' acyl chain length. Furthermore, by introducing lipid A-modifying genes into 18-323 to generate isogenic strains with varying penta-acyl lipid A structures, we determined that both modifications increase TLR4 activation, although the GlcN modification plays a dominant role. These results shed light on how TLR4 may interact with penta-acyl lipid A species.


Asunto(s)
Bordetella pertussis/metabolismo , Lípido A/metabolismo , Multimerización de Proteína , Receptor Toll-Like 4/metabolismo , Bordetella pertussis/química , Bordetella pertussis/genética , Secuencia de Carbohidratos , Línea Celular , Sitios Genéticos , Humanos , Lípido A/química , Lípido A/genética , Especificidad de la Especie , Receptor Toll-Like 4/química , Receptor Toll-Like 4/genética
3.
Antimicrob Agents Chemother ; 58(8): 4931-4, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24867963

RESUMEN

Bordetella pertussis, the causative agent of whooping cough, has many strategies for evading the human immune system. Lipopolysaccharide (LPS) is an important Gram-negative bacterial surface structure that activates the immune system via Toll-like receptor 4 and enables susceptibility to cationic antimicrobial peptides (CAMPs). We show modification of the lipid A region of LPS with glucosamine increased resistance to numerous CAMPs, including LL-37. Furthermore, we demonstrate that this glucosamine modification increased resistance to outer membrane perturbation.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Bordetella pertussis/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Farmacorresistencia Bacteriana , Glucosamina/metabolismo , Lípido A/metabolismo , Secuencia de Aminoácidos , Antibacterianos/farmacología , Bordetella pertussis/química , Bordetella pertussis/crecimiento & desarrollo , Bordetella pertussis/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Glucosamina/química , Lípido A/química , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Polimixinas/farmacología
4.
Infect Immun ; 78(5): 2060-9, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20176798

RESUMEN

Bordetella pertussis endotoxin is a key modulator of the host immune response, mainly due to the role of its lipid A moiety in Toll-like receptor 4 (TLR4)-mediated signaling. We have previously demonstrated that the lipid A phosphate groups of B. pertussis BP338 can be substituted with glucosamine in a BvgAS-regulated manner. Here we examined the effect of this lipid A modification on the biological activity of B. pertussis endotoxin. We compared purified endotoxin and heat-killed B. pertussis BP338 whole cells that have modified lipid A phosphate groups to an isogenic mutant lacking this modification with respect to their capacities to induce the release of inflammatory cytokines by human and murine macrophages and to participate in the TLR4-mediated activation of NF-kappaB in transfected HEK-293 cells. We found inactivated B. pertussis cells to be stronger inducers of proinflammatory cytokines in THP-1-derived macrophages when lipid A was modified. Most notably, lack of lipid A modification abolished the ability of purified B. pertussis endotoxin to induce the release of inflammatory cytokines by human THP-1-derived macrophages but led to only slightly reduced inflammatory cytokine levels when stimulating murine (RAW 264.7) macrophages. Accordingly, upon stimulation of HEK-293 cells with inactivated bacteria and purified endotoxin, lack of lipid A modification led to impaired NF-kappaB activation only when human, and not when murine, TLR4-MD-2-CD14 was expressed. We speculate that in B. pertussis, lipid A modification has evolved to benefit the bacteria during human infection by modulating immune defenses rather than to evade innate immune recognition.


Asunto(s)
Bordetella pertussis/inmunología , Citocinas/biosíntesis , Lípido A/química , Lípido A/inmunología , Macrófagos/inmunología , FN-kappa B/inmunología , Animales , Bordetella pertussis/patogenicidad , Línea Celular , Glucosamina/metabolismo , Humanos , Receptores de Lipopolisacáridos/inmunología , Antígeno 96 de los Linfocitos/inmunología , Ratones , Fosfatos/metabolismo , Receptor Toll-Like 4/inmunología
5.
Nat Commun ; 11(1): 5818, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33199689

RESUMEN

Cholesterol-dependent cytolysins (CDCs) are pore-forming proteins that serve as major virulence factors for pathogenic bacteria. They target eukaryotic cells using different mechanisms, but all require the presence of cholesterol to pierce lipid bilayers. How CDCs use cholesterol to selectively lyse cells is essential for understanding virulence strategies of several pathogenic bacteria, and for repurposing CDCs to kill new cellular targets. Here we address that question by trapping an early state of pore formation for the CDC intermedilysin, bound to the human immune receptor CD59 in a nanodisc model membrane. Our cryo electron microscopy map reveals structural transitions required for oligomerization, which include the lateral movement of a key amphipathic helix. We demonstrate that the charge of this helix is crucial for tuning lytic activity of CDCs. Furthermore, we discover modifications that overcome the requirement of cholesterol for membrane rupture, which may facilitate engineering the target-cell specificity of pore-forming proteins.


Asunto(s)
Membrana Celular/metabolismo , Citotoxinas/química , Citotoxinas/metabolismo , Antígenos CD59/metabolismo , Membrana Celular/ultraestructura , Microscopía por Crioelectrón , Citotoxinas/genética , Humanos , Modelos Biológicos , Modelos Moleculares , Mutación/genética , Estructura Secundaria de Proteína , Relación Estructura-Actividad
6.
Struct Dyn ; 4(3): 032105, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28345008

RESUMEN

Membrane-integral pyrophosphatases (mPPases) couple the hydrolysis of pyrophosphate (PPi) to the pumping of Na+, H+, or both these ions across a membrane. Recently solved structures of the Na+-pumping Thermotoga maritima mPPase (TmPPase) and H+-pumping Vigna radiata mPPase revealed the basis of ion selectivity between these enzymes and provided evidence for the mechanisms of substrate hydrolysis and ion-pumping. Our atomistic molecular dynamics (MD) simulations of TmPPase demonstrate that loop 5-6 is mobile in the absence of the substrate or substrate-analogue bound to the active site, explaining the lack of electron density for this loop in resting state structures. Furthermore, creating an apo model of TmPPase by removing ligands from the TmPPase:IDP:Na structure in MD simulations resulted in increased dynamics in loop 5-6, which results in this loop moving to uncover the active site, suggesting that interactions between loop 5-6 and the imidodiphosphate and its associated Mg2+ are important for holding a loop-closed conformation. We also provide further evidence for the transport-before-hydrolysis mechanism by showing that the non-hydrolyzable substrate analogue, methylene diphosphonate, induces low levels of proton pumping by VrPPase.

7.
Innate Immun ; 20(6): 659-72, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24127384

RESUMEN

Endotoxin is recognized as one of the virulence factors of the Bordetella avium bird pathogen, and characterization of its structure and corresponding genomic features are important for an understanding of its role in pathogenicity and for an improved general knowledge of Bordetella spp virulence factors. The structure of the biologically active part of B. avium LPS, lipid A, is described and compared to those of another bird pathogen, opportunistic in humans, Bordetella hinzii, and to that of Bordetella trematum, a human pathogen. Sequence analyses showed that the three strains have homologues of acyl-chain modifying enzymes PagL, PagP and LpxO, of the 1-phosphatase LpxE, in addition to LgmA, LgmB and LgmC, which are required for the glucosamine modification. MALDI mass spectrometry identified a high amount of glucosamine substituting the phosphate groups of B. avium lipid A; this modification was absent from B. hinzii and B. trematum. The acylation patterns of the three lipid As were similar, but they differed from those of Bordetella pertussis and Bordetella parapertussis. They were also found to be close to the lipid A structure of Bordetella bronchiseptica, a mammalian pathogen, only differing from the latter by the degree of hydroxylation of the branched fatty acid.


Asunto(s)
Bordetella avium/química , Bordetella/química , Lípido A/química , Secuencia de Aminoácidos , Bordetella/genética , Bordetella avium/genética , Endotoxinas/farmacología , Ácidos Grasos/química , Genoma Bacteriano/genética , Glucosamina/química , Humanos , Hidrólisis , Lípido A/genética , Lipopolisacáridos/farmacología , Datos de Secuencia Molecular , Fosfatos/química
8.
PLoS One ; 6(6): e20585, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21695123

RESUMEN

Bordetella pertussis employs numerous strategies to evade the immune system, including the ability to resist killing via complement. Previously we have shown that B. pertussis binds a complement regulatory protein, C1 esterase inhibitor (C1inh) to its surface in a Bvg-regulated manner (i.e. during its virulence phase), but the B. pertussis factor was not identified. Here we set out to identify the B. pertussis C1inh-binding factor. Using a serum overlay assay, we found that this factor migrates at approximately 100 kDa on an SDS-PAGE gel. To identify this factor, we isolated proteins of approximately 100 kDa from wild type strain BP338 and from BP347, an isogenic Bvg mutant that does not bind C1inh. Using mass spectrometry and bioinformatics, we identified the autotransporter protein Vag8 as the putative C1inh binding protein. To prove that Vag8 binds C1inh, vag8 was disrupted in two different B. pertussis strains, namely BP338 and 18-323, and the mutants were tested for their ability to bind C1inh in a surface-binding assay. Neither mutant strain was capable of binding C1inh, whereas a complemented strain successfully bound C1inh. In addition, the passenger domain of Vag8 was expressed and purified as a histidine-tagged fusion protein and tested for C1inh-binding in an ELISA assay. Whereas the purified Vag8 passenger bound C1inh, the passenger domain of BrkA (a related autotransporter protein) failed to do so. Finally, serum assays were conducted to compare wild type and vag8 mutants. We determined that vag8 mutants from both strains were more susceptible to killing compared to their isogenic wild type counterparts. In conclusion, we have discovered a novel role for the previously uncharacterized protein Vag8 in the immune evasion of B. pertussis. Vag8 binds C1inh to the surface of the bacterium and confers serum resistance.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bordetella pertussis/metabolismo , Proteína Inhibidora del Complemento C1/metabolismo , Suero/microbiología , Bioensayo , Genes Bacterianos/genética , Sitios Genéticos/genética , Humanos , Espectrometría de Masas , Peso Molecular , Proteínas Mutantes/metabolismo , Mutación/genética , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA