Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Renal Physiol ; 324(3): F287-F300, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36727944

RESUMEN

Patients with cancer represent a unique patient population with increased susceptibility to kidney disease. Drug-induced acute kidney injury (AKI) in patients with cancer is a common problem. Cisplatin is a highly effective treatment used in many solid-organ cancers and causes AKI in 30% of patients, increasing the risk of chronic kidney disease development. Most preclinical cisplatin toxicity studies have been completed in mice without cancer. We believe that the physiology of patients with cancer is not adequately represented in preclinical models, and the objective of this study was to determine how lung cancer will alter the nephrotoxicity of cisplatin. A genetically engineered mouse model and a syngeneic xenograft model of lung cancer were used. Mice were divided into the following four groups: 1) noncancer/vehicle, 2) noncancer/cisplatin, 3) cancer/vehicle, and 4) cancer/cisplatin. Mice were administered cisplatin via intraperitoneal injection once a week for 4 wk. Animals were euthanized 72 h following their final cisplatin injection. Mice with lung cancer had increased renal toxicity, injury, and fibrosis following repeated low doses of cisplatin. In addition, lung cancer alone induced kidney injury and fibrosis in the kidney before cisplatin treatment. In conclusion, this is the first study that we are aware of that assesses the impact of cancer on the kidney in conjunction with the nephrotoxicity of cisplatin. We believe that cancer is providing the first hit to the kidney and the subsequent damage from repeated doses of cisplatin becomes unsurmountable, leading to AKI and progression to chronic kidney disease.NEW & NOTEWORTHY Patients with cancer have impaired kidney function and increased susceptibility to nephrotoxic agents. Cisplatin is a commonly used chemotherapeutic with nephrotoxicity as the dose-limiting side effect. Cisplatin nephrotoxicity is almost exclusively studied in mice without cancer. Our current preclinical models do not adequately represent the complexity of patients with cancer. This study demonstrates increased renal toxicity, injury, and fibrosis in mice with lung cancer, which is exacerbated with cisplatin treatment. These results highlight the necessity of using preclinical models that more accurately capture the altered physiology of patients with cancer treated with cisplatin.


Asunto(s)
Lesión Renal Aguda , Antineoplásicos , Neoplasias Pulmonares , Insuficiencia Renal Crónica , Humanos , Ratones , Animales , Cisplatino/efectos adversos , Antineoplásicos/efectos adversos , Lesión Renal Aguda/patología , Riñón/patología , Insuficiencia Renal Crónica/patología , Neoplasias Pulmonares/patología , Fibrosis
2.
Ophthalmology ; 130(8): 837-843, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37030453

RESUMEN

PURPOSE: Epidemiological changes in retinopathy of prematurity (ROP) depend on neonatal care, neonatal mortality, and the ability to carefully titrate and monitor oxygen. We evaluate whether an artificial intelligence (AI) algorithm for assessing ROP severity in babies can be used to evaluate changes in disease epidemiology in babies from South India over a 5-year period. DESIGN: Retrospective cohort study. PARTICIPANTS: Babies (3093) screened for ROP at neonatal care units (NCUs) across the Aravind Eye Care System (AECS) in South India. METHODS: Images and clinical data were collected as part of routine tele-ROP screening at the AECS in India over 2 time periods: August 2015 to October 2017 and March 2019 to December 2020. All babies in the original cohort were matched 1:3 by birthweight (BW) and gestational age (GA) with babies in the later cohort. We compared the proportion of eyes with moderate (type 2) or treatment-requiring (TR) ROP, and an AI-derived ROP vascular severity score (from retinal fundus images) at the initial tele-retinal screening exam for all babies in a district, VSS), in the 2 time periods. MAIN OUTCOME MEASURES: Differences in the proportions of type 2 or worse and TR-ROP cases, and VSS between time periods. RESULTS: Among BW and GA matched babies, the proportion [95% confidence interval {CI}] of babies with type 2 or worse and TR-ROP decreased from 60.9% [53.8%-67.7%] to 17.1% [14.0%-20.5%] (P < 0.001) and 16.8% [11.9%-22.7%] to 5.1% [3.4%-7.3%] (P < 0.001), over the 2 time periods. Similarly, the median [interquartile range] VSS in the population decreased from 2.9 [1.2] to 2.4 [1.8] (P < 0.001). CONCLUSIONS: In South India, over a 5-year period, the proportion of babies developing moderate to severe ROP has dropped significantly for babies at similar demographic risk, strongly suggesting improvements in primary prevention of ROP. These results suggest that AI-based assessment of ROP severity may be a useful epidemiologic tool to evaluate temporal changes in ROP epidemiology. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found after the references.


Asunto(s)
Retinopatía de la Prematuridad , Telemedicina , Recién Nacido , Lactante , Humanos , Retinopatía de la Prematuridad/diagnóstico , Retinopatía de la Prematuridad/epidemiología , Estudios Retrospectivos , Inteligencia Artificial , Factores de Riesgo , Edad Gestacional , Peso al Nacer , Telemedicina/métodos , Tamizaje Neonatal/métodos
3.
J Assoc Physicians India ; 71(12): 36-46, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38736053

RESUMEN

BACKGROUND: Obesity, prediabetes, and type 2 diabetes mellitus (T2DM) pose a triple burden in India. Almost two-thirds of people with diabetes (PWD) in India are found to have suboptimal glycemic, blood pressure, and lipid control. Medical nutrition therapy (MNT) in diabetes has emphasized on the amount and type of carbohydrates for years. However, protein, an important macronutrient in diabetes management, needs to be focused upon, especially in India, where the consumption is found to be lower than the recommendations provided by most guidelines. AIM: An expert committee attempted to review the role of dietary protein in the management of T2DM, arrive at a consensus on the significance of increasing dietary protein for various benefits, and offer practical guidance on ways to improve protein intake among Indians. METHODOLOGY: A total of 10 endocrinologists and diabetologists, one nephrologist, and three registered dietitians representing four zones of India formed the expert committee. An in-depth review of literature in the Indian context was carried out, and the draft document was shared with the expert committee, and their views were incorporated into the same. The expert committee then assembled virtually to deliberate on various aspects of the role of protein in T2DM management. The experts from various specialties gave their valuable inputs and suggestions from their extensive personal clinical experience and research work, which helped to reach a consensus on the role and significance of protein in the management of T2DM and its complications in India. RESULTS: There is abundant evidence that MNT is essential for the prevention and management of T2DM and its complications. Experts agreed that increasing protein intake offers myriad health benefits, namely reducing glycemic variability, improving glycemic control, increasing insulin sensitivity, improvement in lipid profile and immunity, and helping in weight management and preservation of muscle mass in PWD. The expert committee suggested aiming for an increase in protein intake by at least 5-10% of the current intake in lieu of carbohydrates in PWD. Experts also highlighted the need for more data quantifying the unmet protein needs in the Indian PWD, especially among vegetarians. Randomized controlled trials to study the effect of protein in diabetes complications such as cardiovascular disease (CVD) and diabetic kidney disease (DKD) and comorbid conditions such as sarcopenia among the Indian population are also warranted. CONCLUSION: Increasing protein quantity and quality in the diets of Indian PWD could significantly contribute to positive health outcomes. Increased protein intake, preferably through dietary sources to meet the requirements and, when required using diabetes-specific protein supplements (DSPS), is recommended in the prevention and control of T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Proteínas en la Dieta , Diabetes Mellitus Tipo 2/dietoterapia , Humanos , Proteínas en la Dieta/administración & dosificación , India
4.
J Lipid Res ; 63(3): 100179, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35151662

RESUMEN

Cisplatin is a commonly used chemotherapeutic for the treatment of many solid organ cancers; however, its effectiveness is limited by the development of acute kidney injury (AKI) in 30% of patients. AKI is driven by proximal tubule cell death, leading to rapid decline in renal function. It has previously been shown that sphingolipid metabolism plays a role in regulating many of the biological processes involved in cisplatin-induced AKI. For example, neutral ceramidase (nCDase) is an enzyme responsible for converting ceramide into sphingosine, which is then phosphorylated to become sphingosine-1-phosphate, and our lab previously demonstrated that nCDase knockout (nCDase-/-) in mouse embryonic fibroblasts led to resistance to nutrient and energy deprivation-induced cell death via upregulation of autophagic flux. In this study, we further characterized the role of nCDase in AKI by demonstrating that nCDase-/- mice are resistant to cisplatin-induced AKI. nCDase-/- mice display improved kidney function, reduced injury and structural damage, lower rates of apoptosis, and less ER stress compared to wild-type mice following cisplatin treatment. Although the mechanism of protection is still unknown, we propose that it could be mediated by increased autophagy, as chloroquine treatment resensitized nCDase-/- mice to AKI development. Taken together, we conclude that nCDase may represent a novel target to prevent cisplatin-induced nephrotoxicity.


Asunto(s)
Lesión Renal Aguda , Lipogranulomatosis de Farber , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/prevención & control , Animales , Apoptosis/fisiología , Cisplatino/efectos adversos , Fibroblastos/metabolismo , Humanos , Ratones , Ceramidasa Neutra/metabolismo
5.
Am J Physiol Renal Physiol ; 323(3): F288-F298, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35796459

RESUMEN

The nephrotoxicity of cisplatin remains a major hurdle in the field of oncology. Thirty percent of patients treated with cisplatin develop acute kidney injury, and all patients are at risk for long-term impacts on kidney function. There are currently no Federal Drug Administration-approved agents to prevent or treat cisplatin-induced kidney injury. The dosing regimen used in preclinical models of nephrotoxicity may impact the success of therapeutic candidates in clinical trials. Here, we demonstrated that pharmacological inhibitors of autophagy have opposite effects when used as interventions in two different models of cisplatin-induced kidney injury. Eight-week-old male C57BL/6 mice were treated with either one dose of 20 mg/kg cisplatin or weekly doses of 9 mg/kg cisplatin for 4 wk or until body weight loss exceeded 30%. Concurrently, mice were administered multiple doses of 60 mg/kg chloroquine or 15 mg/kg 3-methyladenine attempting to globally inhibit autophagy. Mice that received a single high dose of cisplatin had worsened kidney function, inflammation, and cell death with the addition of chloroquine. 3-Methlyadenine did not impact the development of acute kidney injury in this model. In contrast, mice that received repeated low doses of cisplatin showed improved kidney function, reduced inflammation, and reduced fibrosis when treated with either chloroquine or 3-methyladenine. This study highlights how therapeutic candidates can have drastically different effects on the development of cisplatin-induced kidney injury depending on the dosing model used. This emphasizes the importance of choosing the appropriate model of injury for preclinical studies.NEW & NOTEWORTHY This study examined how inhibition of autophagy has opposite effects on the development of acute and chronic kidney injury. Autophagy inhibition exacerbated the development of acute kidney injury following a single high dose of cisplatin but prevented the development of injury and fibrosis following repeated low doses of cisplatin.


Asunto(s)
Lesión Renal Aguda , Antineoplásicos , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/prevención & control , Animales , Antineoplásicos/efectos adversos , Autofagia , Cloroquina/farmacología , Cisplatino/efectos adversos , Fibrosis , Inflamación/metabolismo , Riñón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
6.
Mol Carcinog ; 61(5): 481-493, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35133049

RESUMEN

Arylamine N-acetyltransferase 1 (NAT1) is frequently upregulated in breast cancer. Previous studies showed that inhibition or depletion of NAT1 in breast cancer cells diminishes anchorage-independent growth in culture, suggesting that NAT1 contributes to breast cancer growth and metastasis. To further investigate the contribution of NAT1 to growth and cell invasive/migratory behavior, we subjected parental and NAT1 knockout (KO) breast cancer cell lines (MDA-MB-231, MCF-7, and ZR-75-1) to multiple assays. The rate of cell growth in suspension was not consistently decreased in NAT1 KO cells across the cell lines tested. Similarly, cell migration and invasion assays failed to produce reproducible differences between the parental and NAT1 KO cells. To overcome the limitations of in vitro assays, we tested parental and NAT1 KO cells in vivo in a xenograft model by injecting cells into the flank of immunocompromised mice. NAT1 KO MDA-MB-231 cells produced primary tumors smaller than those formed by parental cells, which was contributed by an increased rate of apoptosis in KO cells. The frequency of lung metastasis, however, was not altered in NAT1 KO cells. When the primary tumors of the parental and NAT1 KO cells were allowed to grow to a pre-determined size or delivered directly via tail vein, the number and size of metastatic foci in the lung did not differ between the parental and NAT1 KO cells. In conclusion, NAT1 contributes to primary and secondary tumor growth in vivo in MDA-MB-231 breast cancer cells but does not appear to affect its metastatic potential.


Asunto(s)
Arilamina N-Acetiltransferasa , Neoplasias de la Mama , Animales , Arilamina N-Acetiltransferasa/genética , Arilamina N-Acetiltransferasa/metabolismo , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Isoenzimas/metabolismo , Ratones
7.
J Cell Biochem ; 122(1): 43-52, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32720736

RESUMEN

Ubiquilin (UBQLN) proteins are involved in diverse cellular processes like endoplasmic reticulum-associated degradation, autophagy, apoptosis, and epithelial-to-mesenchymal transition. UBQLNs interact with a variety of substrates, including cell surface receptors, transcription factor regulators, proteasomal machinery proteins, and transmembrane proteins. In addition, previous work from our lab shows that UBQLN1 interacts with insulin-like growth factor receptor family members (IGF1R, IGF2R, and INSR) and this interaction regulates the activity and proteostasis of IGFR family members. We wondered whether UBQLN proteins could also bind and regulate additional receptor tyrosine kinases. Thus, we investigated a link between UBQLN and the oncogene epidermal growth factor receptor (EGFR) in lung adenocarcinoma cells. Loss of UBQLN1 occurs at high frequency in human lung cancer patient samples and we have shown that the loss of UBQLN1 is capable of altering processes involved in cell proliferation, migration, invasion, and epithelial-to-mesenchymal transition in lung adenocarcinoma cell lines. Here, we present data that loss of UBQLN1 resulted in increased turnover of total EGFR while increasing the relative amount of phosphorylated EGFR in lung adenocarcinoma cells, especially in the presence of its ligand EGF. Furthermore, the loss of UBQLN1 led to a more invasive cell phenotype as manifested by increased proliferation, migration, and speed of movement of these lung adenocarcinoma cells. Taken together, UBQLN1 regulates the expression and stability of EGFR in lung cancer cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenocarcinoma del Pulmón/patología , Proteínas Relacionadas con la Autofagia/metabolismo , Neoplasias Pulmonares/patología , Proteínas Adaptadoras Transductoras de Señales/genética , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Apoptosis , Proteínas Relacionadas con la Autofagia/genética , Movimiento Celular , Proliferación Celular , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Células Tumorales Cultivadas
8.
Ophthalmology ; 128(10): e51-e68, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34247850

RESUMEN

PURPOSE: The International Classification of Retinopathy of Prematurity is a consensus statement that creates a standard nomenclature for classification of retinopathy of prematurity (ROP). It was initially published in 1984, expanded in 1987, and revisited in 2005. This article presents a third revision, the International Classification of Retinopathy of Prematurity, Third Edition (ICROP3), which is now required because of challenges such as: (1) concerns about subjectivity in critical elements of disease classification; (2) innovations in ophthalmic imaging; (3) novel pharmacologic therapies (e.g., anti-vascular endothelial growth factor agents) with unique regression and reactivation features after treatment compared with ablative therapies; and (4) recognition that patterns of ROP in some regions of the world do not fit neatly into the current classification system. DESIGN: Review of evidence-based literature, along with expert consensus opinion. PARTICIPANTS: International ROP expert committee assembled in March 2019 representing 17 countries and comprising 14 pediatric ophthalmologists and 20 retinal specialists, as well as 12 women and 22 men. METHODS: The committee was initially divided into 3 subcommittees-acute phase, regression or reactivation, and imaging-each of which used iterative videoconferences and an online message board to identify key challenges and approaches. Subsequently, the entire committee used iterative videoconferences, 2 in-person multiday meetings, and an online message board to develop consensus on classification. MAIN OUTCOME MEASURES: Consensus statement. RESULTS: The ICROP3 retains current definitions such as zone (location of disease), stage (appearance of disease at the avascular-vascular junction), and circumferential extent of disease. Major updates in the ICROP3 include refined classification metrics (e.g., posterior zone II, notch, subcategorization of stage 5, and recognition that a continuous spectrum of vascular abnormality exists from normal to plus disease). Updates also include the definition of aggressive ROP to replace aggressive-posterior ROP because of increasing recognition that aggressive disease may occur in larger preterm infants and beyond the posterior retina, particularly in regions of the world with limited resources. ROP regression and reactivation are described in detail, with additional description of long-term sequelae. CONCLUSIONS: These principles may improve the quality and standardization of ROP care worldwide and may provide a foundation to improve research and clinical care.


Asunto(s)
Retina/diagnóstico por imagen , Retinopatía de la Prematuridad/clasificación , Diagnóstico por Imagen , Progresión de la Enfermedad , Edad Gestacional , Humanos , Recién Nacido , Retinopatía de la Prematuridad/diagnóstico
9.
J Biol Chem ; 294(31): 11920-11933, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31201273

RESUMEN

Human guanylate kinase (hGMPK) is the only known enzyme responsible for cellular GDP production, making it essential for cellular viability and proliferation. Moreover, hGMPK has been assigned a critical role in metabolic activation of antiviral and antineoplastic nucleoside-analog prodrugs. Given that hGMPK is indispensable for producing the nucleotide building blocks of DNA, RNA, and cGMP and that cancer cells possess elevated GTP levels, it is surprising that a detailed structural and functional characterization of hGMPK is lacking. Here, we present the first high-resolution structure of hGMPK in the apo form, determined with NMR spectroscopy. The structure revealed that hGMPK consists of three distinct regions designated as the LID, GMP-binding (GMP-BD), and CORE domains and is in an open configuration that is nucleotide binding-competent. We also demonstrate that nonsynonymous single-nucleotide variants (nsSNVs) of the hGMPK CORE domain distant from the nucleotide-binding site of this domain modulate enzymatic activity without significantly affecting hGMPK's structure. Finally, we show that knocking down the hGMPK gene in lung adenocarcinoma cell lines decreases cellular viability, proliferation, and clonogenic potential while not altering the proliferation of immortalized, noncancerous human peripheral airway cells. Taken together, our results provide an important step toward establishing hGMPK as a potential biomolecular target, from both an orthosteric (ligand-binding sites) and allosteric (location of CORE domain-located nsSNVs) standpoint.


Asunto(s)
Guanilato-Quinasas/metabolismo , Regulación Alostérica , Animales , Línea Celular Tumoral , Cristalografía por Rayos X , Guanilato-Quinasas/química , Guanilato-Quinasas/genética , Humanos , Cinética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Mutagénesis Sitio-Dirigida , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína , Interferencia de ARN , ARN Interferente Pequeño , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
10.
J Biol Chem ; 294(36): 13464-13477, 2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31337706

RESUMEN

Nucleotide synthesis is essential to proliferating cells, but the preferred precursors for de novo biosynthesis are not defined in human cancer tissues. We have employed multiplexed stable isotope-resolved metabolomics to track the metabolism of [13C6]glucose, D2-glycine, [13C2]glycine, and D3-serine into purine nucleotides in freshly resected cancerous and matched noncancerous lung tissues from nonsmall cell lung cancer (NSCLC) patients, and we compared the metabolism with established NSCLC PC9 and A549 cell lines in vitro Surprisingly, [13C6]glucose was the best carbon source for purine synthesis in human NSCLC tissues, in contrast to the noncancerous lung tissues from the same patient, which showed lower mitotic indices and MYC expression. We also observed that D3-Ser was preferentially incorporated into purine rings over D2-glycine in both tissues and cell lines. MYC suppression attenuated [13C6]glucose, D3-serine, and [13C2]glycine incorporation into purines and reduced proliferation in PC9 but not in A549 cells. Using detailed kinetic modeling, we showed that the preferred use of glucose as a carbon source for purine ring synthesis in NSCLC tissues involves cytoplasmic activation/compartmentation of the glucose-to-serine pathway and enhanced reversed one-carbon fluxes that attenuate exogenous serine incorporation into purines. Our findings also indicate that the substrate for de novo nucleotide synthesis differs profoundly between cancer cell lines and fresh human lung cancer tissues; the latter preferred glucose to exogenous serine or glycine but not the former. This distinction in substrate utilization in purine synthesis in human cancer tissues should be considered when targeting one-carbon metabolism for cancer therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Glicina/biosíntesis , Neoplasias Pulmonares/metabolismo , Nucleótidos de Purina/biosíntesis , Serina/biosíntesis , Células A549 , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular , Humanos , Neoplasias Pulmonares/patología , Metabolómica
11.
BMC Cancer ; 20(1): 824, 2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32867711

RESUMEN

BACKGROUND: N-end rule ubiquitination pathway is known to be disrupted in many diseases, including cancer. UBR5, an E3 ubiquitin ligase, is mutated and/or overexpressed in human lung cancer cells suggesting its pathological role in cancer. METHODS: We determined expression of UBR5 protein in multiple lung cancer cell lines and human patient samples. Using immunoprecipitation followed by mass spectrometry we determined the UBR5 interacting proteins. The impact of loss of UBR5 for lung adenocarcinoma cell lines was analyzed using cell viability, clonogenic assays and in vivo xenograft models in nude mice. Additional Western blot analysis was performed to assess the loss of UBR5 on downstream signaling. Statistical analysis was done by one-way ANOVA for in vitro studies and Wilcoxon paired t-test for in vivo tumor volumes. RESULTS: We show variability of UBR5 expression levels in lung adenocarcinoma cell lines and in primary human patient samples. To gain better insight into the role that UBR5 may play in lung cancer progression we performed unbiased interactome analyses for UBR5. Data indicate that UBR5 has a wide range of interacting protein partners that are known to be involved in critical cellular processes such as DNA damage, proliferation and cell cycle regulation. We have demonstrated that shRNA-mediated loss of UBR5 decreases cell viability and clonogenic potential of lung adenocarcinoma cell lines. In addition, we found decreased levels of activated AKT signaling after the loss of UBR5 in lung adenocarcinoma cell lines using multiple means of UBR5 knockdown/knockout. Furthermore, we demonstrated that loss of UBR5 in lung adenocarcinoma cells results in significant reduction of tumor volume in nude mice. CONCLUSIONS: These findings demonstrate that deregulation of the N-end rule ubiquitination pathway plays a crucial role in the etiology of some human cancers, and blocking this pathway via UBR5-specific inhibitors, may represent a unique therapeutic target for human cancers.


Asunto(s)
Adenocarcinoma del Pulmón/metabolismo , Neoplasias Pulmonares/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Células A549 , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/patología , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Supervivencia Celular/genética , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Ratones , Ratones Noqueados , Ratones Desnudos , Terapia Molecular Dirigida/métodos , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Carga Tumoral/genética , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/efectos de los fármacos , Ubiquitinación/genética , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Soft Matter ; 15(18): 3740-3750, 2019 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-31042253

RESUMEN

A spiropyran-containing triazole-phosphatidylcholine (SPTPC) was synthesized through a copper-catalyzed azide alkyne cyclo-addition (CuAAC) reaction. In water, SPTPCs self-assembled and a spontaneous spiropyran-to-merocyanine (SP-to-MC) isomerization occurred, resulting in coexistence of liposomes and fibers, and switching from the spiropyran (SP) to the merocyanine (MC) isomeric structure induced a reversible transition between these molecular assemblies. Study of the self-assembly of SPTPCs and photo-induced liposome-fiber assembly-transition revealed that the presence of MC enabled additional inter-membrane interaction during self-assembly and that the MC-stacking effect was the driving force for the assembly-transition. Exposure to UV light induced switching from SP to MC, where the planar structure of MC and the confinement of MC led to enhanced MC-stacking. The effect of MC-stacking was both advantageous and disadvantageous: MC-stacking perturbed the hydrophobic phase in the bilayer membrane and facilitated the liposome-to-fiber transition, otherwise the MC-stacking retarded switching of MC to SP, and caused an incomplete recovery of MC to SP during fiber-to-liposome recovery, thus a fatigue of SP was induced by MC-stacking during the liposome-to-fiber transition cycle. To decrease the intermolecular interactions and suppress MC-stacking, photo-inert triazole-phosphatidylcholine (TPC) was incorporated to prepare two-component TPC/SPTPC-liposomes, which exhibited better recovery kinetics. The photo-adaptive behavior of TPC/SPTPC-liposomes confirmed the disturbance of bilayer membranes by inter-membrane MC-stacking and the formation of MCTPC-enriched phases in the bilayer membrane.


Asunto(s)
Benzopiranos/química , Indoles/química , Liposomas/química , Nitrocompuestos/química , Fosfatidilcolinas/química , Procesos Fotoquímicos , Triazoles/química , Alquinos/química , Azidas/química , Catálisis , Cobre/química , Membrana Dobles de Lípidos/química , Transición de Fase , Rayos Ultravioleta
13.
React Funct Polym ; 134: 85-92, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30636923

RESUMEN

A series of functional nanogels were synthesized by a step-growth mechanism that involved diisocyanate addition to a modest stoichiometric excess of multi-thiols. Nanogels with sizes less than 10 nm were obtained as room temperature liquids with residual thiol groups used to attach methacrylate functionality. Depending on nanogel structure, bulk nanogel properties varied widely, as did the properties of the nanogel-derived and nanogel-modified polymers. Photopolymerization of the reactive nanogels in combination with a dimethacrylate monomer showed dramatically enhanced reaction rate and conversion compared with the dimethacrylate homopolymer. Polymerization shrinkage/ stress as well as mechanical properties of the polymer networks were controlled by changing the ratio of nanogels and dimethacrylate monomers used in formulations. Thus, this study shows the potential of step-growth nanogels for beneficial changes in resin reactivity and application-based performance.

14.
Biochem J ; 474(24): 4105-4118, 2017 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-29054976

RESUMEN

Insulin-like growth factor-1 receptor (IGF1R) is a receptor tyrosine kinase that mediates growth, proliferation and survival. Dysregulation of IGF pathway contributes to the initiation, progression and metastasis of cancer and is also involved in diseases of glucose metabolism, such as diabetes. We have identified Ubiquilin1 (UBQLN1) as a novel interaction partner of IGF1R, IGF2R and insulin receptor (INSR). UBQLN family of proteins have been studied primarily in the context of protein quality control and in the field of neurodegenerative disorders. Our laboratory discovered a link between UBQLN1 function and tumorigenesis, such that UBQLN1 is lost and underexpressed in 50% of human lung adenocarcinoma cases. We demonstrate here that UBQLN1 regulates the expression and activity of IGF1R. Following loss of UBQLN1 in lung adenocarcinoma cells, there is accelerated loss of IGF1R. Despite decreased levels of total receptors, the ratio of active : total receptors is higher in cells that lack UBQLN1. UBQLN1 also regulates INSR and IGF2R post-stimulation with ligand. We conclude that UBQLN1 is essential for normal regulation of IGF receptors. UBQLN-1-deficient cells demonstrate increased cell viability compared with control when serum-starved and stimulation of IGF pathway in these cells increased their migratory potential by 3-fold. As the IGF pathway is involved in processes of normal growth, development, metabolism and cancer progression, understanding its regulation by Ubiquilin1 can be of tremendous value to many disciplines.


Asunto(s)
Proteínas Portadoras/fisiología , Proteínas de Ciclo Celular/fisiología , Receptores de Somatomedina/fisiología , Células A549 , Proteínas Adaptadoras Transductoras de Señales , Proteínas Relacionadas con la Autofagia , Supervivencia Celular/fisiología , Células HEK293 , Células HeLa , Humanos , Transporte de Proteínas/fisiología , Receptor IGF Tipo 1
15.
J Lipid Res ; 58(7): 1439-1452, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28490444

RESUMEN

Acute kidney injury (AKI), resulting from chemotherapeutic agents such as cisplatin, remains an obstacle in the treatment of cancer. Cisplatin-induced AKI involves apoptotic and necrotic cell death, pathways regulated by sphingolipids such as ceramide and glucosylceramide. Results from this study indicate that C57BL/6J mice treated with cisplatin had increased ceramide and hexosylceramide levels in the renal cortex 72 h following cisplatin treatment. Pretreatment of mice with inhibitors of acid sphingomyelinase and de novo ceramide synthesis (amitriptyline and myriocin, respectively) prevented accumulation of ceramides and hexosylceramide in the renal cortex and protected from cisplatin-induced AKI. To determine the role of ceramide metabolism to hexosylceramides in kidney injury, we treated mice with a potent and highly specific inhibitor of glucosylceramide synthase, the enzyme responsible for catalyzing the glycosylation of ceramides to form glucosylceramides. Inhibition of glucosylceramide synthase attenuated the accumulation of the hexosylceramides and exacerbated ceramide accumulation in the renal cortex following treatment of mice with cisplatin. Increasing ceramides and decreasing glucosylceramides in the renal cortex sensitized mice to cisplatin-induced AKI according to markers of kidney function, kidney injury, inflammation, cell stress, and apoptosis. Under conditions of high ceramide generation, data suggest that metabolism of ceramides to glucosylceramides buffers kidney ceramides and helps attenuate kidney injury.-Dupre, T. V., M. A. Doll, P. P. Shah, C. N. Sharp, D. Siow, J. Megyesi, J. Shayman, A. Bielawska, J. Bielawski, L. J. Beverly, M. Hernandez-Corbacho, C. J. Clarke, A. J. Snider, R. G. Schnellmann, L. M. Obeid, Y. A. Hannun, and L. J. Siskind. Inhibiting glucosylceramide synthase exacerbates cisplatin-induced acute kidney injury. J. Lipid Res 2017. 58: 1439-1452.


Asunto(s)
Lesión Renal Aguda/inducido químicamente , Cisplatino/efectos adversos , Inhibidores Enzimáticos/farmacología , Glucosiltransferasas/antagonistas & inhibidores , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/fisiopatología , Animales , Ceramidas/metabolismo , Corteza Renal/irrigación sanguínea , Corteza Renal/efectos de los fármacos , Corteza Renal/metabolismo , Masculino , Ratones , Ratas , Daño por Reperfusión/metabolismo
16.
J Cell Biochem ; 118(8): 2261-2270, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28075048

RESUMEN

There are five Ubiquilin proteins (UBQLN1-4, UBQLN-L), which are evolutionarily conserved and structurally similar. UBQLN proteins have three functional domains: N-terminal ubiquitin-like domain (UBL), C-terminal ubiquitin-associated domain (UBA), and STI chaperone-like regions in the middle. Alterations in UBQLN1 gene have been detected in a variety of disorders ranging from Alzheimer's disease to cancer. UBQLN1 has been largely studied in neurodegenerative disorders in the context of protein quality control. Several studies have hypothesized that the UBA domain of UBQLN1 binds to poly-ubiquitin chains of substrate and shuttles it to the proteasome via its UBL domain for degradation. UBQLN1 either facilitates degradation (Ataxin3, EPS15) or stabilizes (PSEN1/2, BCLb) substrates it binds to. The signal that determines this fate is unknown and there is conflicting data to support the existing working model of UBQLN1. Using BCLb as a model substrate, we characterized UBQLN1-substrate interaction. We identified the first two STI domains of UBQLN1 as critical for binding to BCLb. Interaction of UBQLN1 with BCLb is independent of ubiquitination of BCLb, but interaction with ubiquitin via UBA domain is required for stabilization of BCLb. Similarly, we showed that UBQLN1 interacts with IGF1R and ESYT2 through the STI domains and stabilizes these proteins through its UBA domain. Interactions that are not dependent on STI domains, for example, UBL mediated interaction with PSMD4 and BAG6, do not appear to be stabilized by UBQLN1. We conclude that fate of substrates that UBQLN1 associates with, is interaction domain specific. J. Cell. Biochem. 118: 2261-2270, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteostasis/fisiología , Proteínas Adaptadoras Transductoras de Señales , Proteínas Relacionadas con la Autofagia , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Línea Celular , Citoplasma/metabolismo , Humanos , Espectrometría de Masas , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Plásmidos/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteostasis/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas de Unión al ARN , Receptor IGF Tipo 1 , Receptores de Somatomedina/genética , Receptores de Somatomedina/metabolismo , Ubiquitina/metabolismo
17.
Retina ; 42(8): e34, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33315826
18.
Biochem J ; 473(6): 743-55, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26747710

RESUMEN

Sphingolipids are a family of lipids that regulate the cell cycle, differentiation and cell death. Sphingolipids are known to play a role in the induction of apoptosis, but a role for these lipids in necroptosis is largely unknown. Necroptosis is a programmed form of cell death that, unlike apoptosis, does not require ATP. Necroptosis can be induced under a variety of conditions, including nutrient deprivation and plays a major role in ischaemia/reperfusion injury to organs. Sphingolipids play a role in ischaemia/reperfusion injury in several organs. Thus, we hypothesized that sphingolipids mediate nutrient-deprivation-induced necroptosis. To address this, we utilized mouse embryonic fibroblast (MEFs) treated with 2-deoxyglucose (2DG) and antimycin A (AA) to inhibit glycolysis and mitochondrial electron transport. 2DG/AA treatment of MEFs induced necroptosis as it was receptor- interacting protein (RIP)-1/3 kinase-dependent and caspase-independent. Ceramides, sphingosine (Sph) and sphingosine 1-phosphate (S1P) were increased following 2DG/AA treatment. Cells lacking neutral ceramidase (nCDase(-/-)) were protected from 2DG/AA. Although nCDase(-/-) cells generated ceramides following 2DG/AA treatment, they did not generate Sph or S1P. This protection was stimulus-independent as nCDase(-/-) cells were also protected from endoplasmic reticulum (ER) stressors [tunicamycin (TN) or thapsigargin (TG)]. nCDase(-/-) MEFs had higher autophagic flux and mitophagy than wild-type (WT) MEFs and inhibition of autophagy sensitized them to necroptosis. These data indicate that loss of nCDase protects cells from nutrient- deprivation-induced necroptosis via autophagy, and clearance of damaged mitochondria. Results suggest that nCDase is a mediator of necroptosis and might be a novel therapeutic target for protection from ischaemic injury.


Asunto(s)
Muerte Celular/fisiología , Fibroblastos/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/fisiología , Ceramidasa Neutra/metabolismo , Animales , Antimicina A/análogos & derivados , Antimicina A/farmacología , Muerte Celular/efectos de los fármacos , Células Cultivadas , Desoxiglucosa/farmacología , Eliminación de Gen , Lisofosfolípidos/metabolismo , Ratones , Ratones Noqueados , Ceramidasa Neutra/genética , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Regulación hacia Arriba
19.
J Assoc Physicians India ; 65(3 Suppl): 23-30, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28832101

RESUMEN

INTRODUCTION: Insulin is an effective, safe and well-tolerated drug for glycaemic control. However, there are significant barriers to its use. OBJECTIVE: This consensus statement aims to define these barriers and suggest bridges to overcome them. METHODS: The consensus statements are based upon deliberations of a meeting held at New Delhi, India on 20 August 2016. The expert group committee reviewed various barriers to insulin use and categorized them into various categories: patient/community-related, physician-related and drug-related. The committee further proposed recommendations, based on published literature and their clinical experience, to address each of these barriers. RESULTS: Barriers (and bridges) can be classified as patient/community, physician/provider, and drug/device. Patient and physician barriers can further be categorized as those related to perceived inadequacy, perceived high cost, and perceived lack of benefit. Drug and device barriers can similarly be classified as those linked with perceived inadequacy, perceived high cost, and perceived lack of tolerability. Such a classification allows diabetes care providers to build appropriate bridges, which in turn facilitate timely insulin usage. Patient related barriers can be bridged by education, support and counselling. Use of modern insulin regimes and social marketing can address barriers related to perceived cost and lack of benefit. Physician related barriers can be resolved by training on various aspects of diabetes care. This will also help to break drug and device barriers, by ensuring appropriate choice of regimes, preparations and delivery devices. CONCLUSIONS: The consensus statements provide an easily understandable taxonomic structure of barriers to insulin use. By using a reader-friendly rubric, and by focusing on bridges (rather than barriers alone), it promotes a proactive and positive approach to diabetes management. The consensus statement should serve as a useful pedagogic and clinical tool for diabetes care professionals, and facilitate good diabetes care across the world.


Asunto(s)
Conocimientos, Actitudes y Práctica en Salud , Hipoglucemiantes/uso terapéutico , Insulina/uso terapéutico , Actitud del Personal de Salud , Consenso , Consejo Dirigido , Educación Médica , Humanos , Hipoglucemiantes/efectos adversos , Hipoglucemiantes/economía , Inyecciones/instrumentación , Inyecciones/métodos , Insulina/efectos adversos , Insulina/análogos & derivados , Insulina/economía , Educación del Paciente como Asunto , Mercadeo Social , Estigma Social
20.
Am J Physiol Renal Physiol ; 310(6): F560-8, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26739893

RESUMEN

Cisplatin, a chemotherapeutic used for the treatment of solid cancers, has nephrotoxic side effects leading to acute kidney injury (AKI). Cisplatin cannot be given to patients that have comorbidities that predispose them to an increased risk for AKI. Even without these comorbidities, 30% of patients administered cisplatin will develop kidney injury, requiring the oncologist to withhold or reduce the next dose, leading to a less effective therapeutic regimen. Although recovery can occur after one episode of cisplatin-induced AKI, longitudinal studies have indicated that multiple episodes of AKI lead to the development of chronic kidney disease, an irreversible disease with no current treatment. The standard mouse model of cisplatin-induced AKI consists of one high dose of cisplatin (>20 mg/kg) that is lethal to the animal 3 days later. This model does not accurately reflect the dosing regimen patients receive nor does it allow for the long-term study of kidney function and biology. We have developed a repeated dosing model whereby cisplatin is given once a week for 4 wk. Comparison of the repeated dosing model with the standard dosing model demonstrated that inflammatory cytokines and chemokines were induced in the repeated dosing model, but levels of cell death were lower in the repeated dosing model. The repeated dosing model had increased levels of fibrotic markers (fibronectin, transforming growth factor-ß, and α-smooth muscle actin) and interstitial fibrosis. These data indicate that the repeated dosing model can be used to study the AKI to chronic kidney disease progression as well as the mechanisms of this progression.


Asunto(s)
Antineoplásicos/efectos adversos , Cisplatino/efectos adversos , Modelos Animales de Enfermedad , Riñón/efectos de los fármacos , Nefroesclerosis/inducido químicamente , Animales , Antineoplásicos/administración & dosificación , Biomarcadores/metabolismo , Quimiocinas/metabolismo , Cisplatino/administración & dosificación , Estrés del Retículo Endoplásmico/efectos de los fármacos , Fibrosis , Riñón/metabolismo , Riñón/patología , Pruebas de Función Renal , Masculino , Ratones , Nefroesclerosis/mortalidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA