Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nucleic Acids Res ; 43(4): 2282-92, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25670677

RESUMEN

Curved DNA binding protein A (CbpA) is a co-chaperone and nucleoid associated DNA binding protein conserved in most γ-proteobacteria. Best studied in Escherichia coli, CbpA accumulates to >2500 copies per cell during periods of starvation and forms aggregates with DNA. However, the molecular basis for DNA binding is unknown; CbpA lacks motifs found in other bacterial DNA binding proteins. Here, we have used a combination of genetics and biochemistry to elucidate the mechanism of DNA recognition by CbpA. We show that CbpA interacts with the DNA minor groove. This interaction requires a highly conserved arginine side chain. Substitution of this residue, R116, with alanine, specifically disrupts DNA binding by CbpA, and its homologues from other bacteria, whilst not affecting other CbpA activities. The intracellular distribution of CbpA alters dramatically when DNA binding is negated. Hence, we provide a direct link between DNA binding and the behaviour of CbpA in cells.


Asunto(s)
Arginina/química , Proteínas Portadoras/química , Proteínas de Unión al ADN/química , ADN/metabolismo , Proteínas de Escherichia coli/química , Sustitución de Aminoácidos , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Multimerización de Proteína
2.
PLoS Genet ; 9(1): e1003152, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23341772

RESUMEN

The Escherichia coli curved DNA binding protein A (CbpA) is a poorly characterised nucleoid associated factor and co-chaperone. It is expressed at high levels as cells enter stationary phase. Using genetics, biochemistry, and genomics, we have examined regulation of, and DNA binding by, CbpA. We show that Fis, the dominant growth-phase nucleoid protein, prevents CbpA expression in growing cells. Regulation by Fis involves an unusual "insulation" mechanism. Thus, Fis protects cbpA from the effects of a distal promoter, located in an adjacent gene. In stationary phase, when Fis levels are low, CbpA binds the E. coli chromosome with a preference for the intrinsically curved Ter macrodomain. Disruption of the cbpA gene prompts dramatic changes in DNA topology. Thus, our work identifies a novel role for Fis and incorporates CbpA into the growing network of factors that mediate bacterial chromosome structure.


Asunto(s)
Proteínas Portadoras , Cromosomas Bacterianos , Proteínas de Escherichia coli , Escherichia coli , Factor Proteico para Inverción de Estimulación , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cromosomas Bacterianos/metabolismo , Cromosomas Bacterianos/ultraestructura , ADN Bacteriano/química , ADN Bacteriano/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Factor Proteico para Inverción de Estimulación/genética , Factor Proteico para Inverción de Estimulación/metabolismo , Regulación Bacteriana de la Expresión Génica , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Regiones Promotoras Genéticas , Transcripción Genética
3.
Mol Microbiol ; 91(4): 716-23, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24330313

RESUMEN

Microbes have evolved sophisticated mechanisms of motility allowing them to respond to changing environmental conditions. While this cellular process is well characterized in bacteria, the mode and mechanisms of motility are poorly understood in archaea. This study examines the motility of individual cells of the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. Specifically, we investigated motility of cells producing exclusively the archaeal swimming organelle, the archaellum. Archaella are structurally and in sequence similar to bacterial type IV pili involved in surface motility via pilus extension-retraction cycles and not to rotating bacterial flagella. Unexpectedly, our studies reveal a novel type of behaviour for type IV pilus like structures: archaella rotate and their rotation drives swimming motility. Moreover, we demonstrate that temperature has a direct effect on rotation velocity explaining temperature-dependent swimming velocity.


Asunto(s)
Extensiones de la Superficie Celular/fisiología , Sulfolobus acidocaldarius/fisiología , Extensiones de la Superficie Celular/efectos de la radiación , Locomoción/efectos de la radiación , Sustancias Macromoleculares/metabolismo , Sulfolobus acidocaldarius/efectos de la radiación , Temperatura
4.
Nucleic Acids Res ; 41(1): 196-205, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-23155062

RESUMEN

Archaeal chromatin proteins share molecular and functional similarities with both bacterial and eukaryotic chromatin proteins. These proteins play an important role in functionally organizing the genomic DNA into a compact nucleoid. Cren7 and Sul7 are two crenarchaeal nucleoid-associated proteins, which are structurally homologous, but not conserved at the sequence level. Co-crystal structures have shown that these two proteins induce a sharp bend on binding to DNA. In this study, we have investigated the architectural properties of these proteins using atomic force microscopy, molecular dynamics simulations and magnetic tweezers. We demonstrate that Cren7 and Sul7 both compact DNA molecules to a similar extent. Using a theoretical model, we quantify the number of individual proteins bound to the DNA as a function of protein concentration and show that forces up to 3.5 pN do not affect this binding. Moreover, we investigate the flexibility of the bending angle induced by Cren7 and Sul7 and show that the protein-DNA complexes differ in flexibility from analogous bacterial and eukaryotic DNA-bending proteins.


Asunto(s)
Proteínas Arqueales/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/química , Proteínas Arqueales/análisis , Proteínas Arqueales/química , Proteínas Cromosómicas no Histona/análisis , Proteínas Cromosómicas no Histona/química , ADN/ultraestructura , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/química , Microscopía de Fuerza Atómica , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Sulfolobus solfataricus
5.
Proc Natl Acad Sci U S A ; 108(34): 13978-83, 2011 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-21825142

RESUMEN

Growing networks of actin fibers are able to organize into compact, stiff two-dimensional structures inside lamellipodia of crawling cells. We put forward the hypothesis that the growing actin network is a critically self-organized system, in which long-range mechanical stresses arising from the interaction with the plasma membrane provide the selective pressure leading to organization. We show that a simple model based only on this principle reproduces the stochastic nature of lamellipodia protrusion (growth periods alternating with fast retractions) and several of the features observed in experiments: a growth velocity initially insensitive to the external force; the capability of the network to organize its orientation; a load-history-dependent growth velocity. Our model predicts that the spectrum of the time series of the height of a growing lamellipodium decays with the inverse of the frequency. This behavior is a well-known signature of self-organized criticality and is confirmed by unique optical tweezer measurements performed in vivo on neuronal growth cones.


Asunto(s)
Actinas/metabolismo , Movimiento Celular , Citoesqueleto/metabolismo , Neuronas/citología , Neuronas/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Fenómenos Biomecánicos/fisiología , Membrana Celular/metabolismo , Simulación por Computador , Modelos Biológicos , Ratas , Procesos Estocásticos , Estrés Fisiológico
6.
Biophys J ; 102(11): 2451-60, 2012 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-22713560

RESUMEN

We used optical tweezers to analyze the effect of jasplakinolide and cyclodextrin on the force exerted by lamellipodia from developing growth cones (GCs) of isolated dorsal root ganglia (DRG) neurons. We found that 25 nM of jasplakinolide, which is known to inhibit actin filament turnover, reduced both the maximal exerted force and maximal velocity during lamellipodia leading-edge protrusion. By using atomic force microscopy, we verified that cyclodextrin, which is known to remove cholesterol from membranes, decreased the membrane stiffness of DRG neurons. Lamellipodia treated with 2.5 mM of cyclodextrin exerted a larger force, and their leading edge could advance with a higher velocity. Neither jasplakinolide nor cyclodextrin affected force or velocity during lamellipodia retraction. The amplitude and frequency of elementary jumps underlying force generation were reduced by jasplakinolide but not by cyclodextrin. The action of both drugs at the used concentration was fully reversible. These results support the notion that membrane stiffness provides a selective pressure that shapes force generation, and confirm the pivotal role of actin turnover during protrusion.


Asunto(s)
Actinas/metabolismo , Membrana Celular/fisiología , Ganglios Espinales/citología , Ganglios Espinales/fisiología , Seudópodos/fisiología , Animales , Fenómenos Biomecánicos/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Ciclodextrinas/farmacología , Depsipéptidos/farmacología , Módulo de Elasticidad/efectos de los fármacos , Ganglios Espinales/efectos de los fármacos , Seudópodos/efectos de los fármacos , Ratas , Ratas Wistar
7.
Biophys J ; 98(6): 979-88, 2010 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-20303855

RESUMEN

Polymerization of actin filaments is the primary source of motility in lamellipodia and it is controlled by a variety of regulatory proteins. The underlying molecular mechanisms are only partially understood and a precise determination of dynamical properties of force generation is necessary. Using optical tweezers, we have measured with millisecond (ms) temporal resolution and picoNewton (pN) sensitivity the force-velocity (Fv) relationship and the power dissipated by lamellipodia of dorsal root ganglia neurons. When force and velocity are averaged over 3-5 s, the Fv relationships can be flat. On a finer timescale, random occurrence of fast growth and subsecond retractions become predominant. The maximal power dissipated by lamellipodia over a silica bead with a diameter of 1 microm is 10(-16) W. Our results clarify the dynamical properties of force generation: i), force generation is a probabilistic process; ii), underlying biological events have a bandwidth up to at least 10 Hz; and iii), fast growth of lamellipodia leading edge alternates with local retractions.


Asunto(s)
Movimiento Celular/fisiología , Modelos Biológicos , Modelos Químicos , Neuronas/química , Neuronas/fisiología , Seudópodos/química , Seudópodos/fisiología , Animales , Células Cultivadas , Simulación por Computador , Modelos Estadísticos , Movimiento (Física) , Ratas , Ratas Wistar , Estrés Mecánico
8.
Front Cell Neurosci ; 9: 363, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26441534

RESUMEN

Microglial cells are key players in the primary immune response of the central nervous system. They are highly active and motile cells that chemically and mechanically interact with their environment. While the impact of chemical signaling on microglia function has been studied in much detail, the current understanding of mechanical signaling is very limited. When cultured on compliant substrates, primary microglial cells adapted their spread area, morphology, and actin cytoskeleton to the stiffness of their environment. Traction force microscopy revealed that forces exerted by microglia increase with substrate stiffness until reaching a plateau at a shear modulus of ~5 kPa. When cultured on substrates incorporating stiffness gradients, microglia preferentially migrated toward stiffer regions, a process termed durotaxis. Lipopolysaccharide-induced immune-activation of microglia led to changes in traction forces, increased migration velocities and an amplification of durotaxis. We finally developed a mathematical model connecting traction forces with the durotactic behavior of migrating microglial cells. Our results demonstrate that microglia are susceptible to mechanical signals, which could be important during central nervous system development and pathologies. Stiffness gradients in tissue surrounding neural implants such as electrodes, for example, could mechanically attract microglial cells, thus facilitating foreign body reactions detrimental to electrode functioning.

9.
Sci Rep ; 1: 153, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22355669

RESUMEN

We have used optical tweezers to identify the elementary events underlying force generation in neuronal lamellipodia. When an optically trapped bead seals on the lamellipodium membrane, Brownian fluctuations decrease revealing the underlying elementary events. The distribution of bead velocities has long tails with frequent large positive and negative values associated to forward and backward jumps occurring in 0.1-0.2 ms with varying amplitudes up to 20 nm. Jump frequency and amplitude are reduced when actin turnover is slowed down by the addition of 25 nM Jasplakinolide. When myosin II is inhibited by the addition of 20 µM Blebbistatin, jump frequency is reduced but to a lesser extent than by Jasplainolide. These jumps constitute the elementary events underlying force generation.


Asunto(s)
Neuronas/fisiología , Seudópodos/fisiología , Actinas/antagonistas & inhibidores , Actinas/metabolismo , Animales , Fenómenos Biomecánicos , Fenómenos Biofísicos , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Depsipéptidos/farmacología , Ganglios Espinales/citología , Ganglios Espinales/fisiología , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Miosina Tipo II/antagonistas & inhibidores , Miosina Tipo II/metabolismo , Neuronas/efectos de los fármacos , Pinzas Ópticas , Seudópodos/efectos de los fármacos , Ratas , Ratas Wistar
10.
Dev Neurobiol ; 69(11): 731-51, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19593765

RESUMEN

Growth cones are the main motile structures located at the tip of neurites and are composed of a lamellipodium from which thin filopodia emerge. In this article, we analyzed the kinetics and dynamics of growth cones with the aim to understand two major issues: first, the strategy used by filopodia and lamellipodia during their exploration and navigation; second, what kind of mechanical problems neurons need to solve during their operation. In the developing nervous system and in the adult brain, neurons constantly need to solve mechanical problems. Growth cones must decide how to explore the environment and in which direction to grow; they also need to establish the appropriate contacts, to avoid obstacles and to determine how much force to exert. Here, we show that in sparse cultures, filopodia grow and retract following statistical patterns, nearly optimal for an efficient exploration of the environment. In a dense culture, filopodia exploration is still present although significantly reduced. Analysis on 1271, 6432, and 185 pairs of filopodia of DRG, PC12 and Hippocampal neurons respectively showed that the correlation coefficient |rho| of the growth of more than 50% of filopodia pairs was >0.15. From a computational point of view, filopodia and lamellipodia motion can be described by a random process in which errors are corrected by efficient feedback loops. This article argues that neurons not only process sensory signals, but also solve mechanical problems throughout their entire lifespan, from the early stages of embryogenesis to adulthood.


Asunto(s)
Conos de Crecimiento/fisiología , Seudópodos/fisiología , Animales , Movimiento Celular/fisiología , Células Cultivadas , Ganglios Espinales/citología , Hipocampo/citología , Procesamiento de Imagen Asistido por Computador , Cinética , Microscopía por Video , Modelos Neurológicos , Células PC12 , Ratas , Ratas Wistar
11.
PLoS One ; 2(10): e1072, 2007 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-17957254

RESUMEN

During neuronal differentiation, lamellipodia and filopodia explore the environment in search for the correct path to the axon's final destination. Although the motion of lamellipodia and filopodia has been characterized to an extent, little is known about the force they exert. In this study, we used optical tweezers to measure the force exerted by filopodia and lamellipodia with a millisecond temporal resolution. We found that a single filopodium exerts a force not exceeding 3 pN, whereas lamellipodia can exert a force up to 20 pN. Using metabolic inhibitors, we showed that no force is produced in the absence of actin polymerization and that development of forces larger than 3 pN requires microtubule polymerization. These results show that actin polymerization is necessary for force production and demonstrate that not only do neurons process information, but they also act on their environment exerting forces varying from tenths pN to tens of pN.


Asunto(s)
Citoesqueleto/metabolismo , Seudópodos/metabolismo , Actinas/metabolismo , Animales , Axones/metabolismo , Movimiento Celular , Proteínas del Citoesqueleto/metabolismo , Matriz Extracelular/metabolismo , Conos de Crecimiento/metabolismo , Modelos Biológicos , Modelos Estadísticos , Neuronas/metabolismo , Pinzas Ópticas , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA