RESUMEN
Administration of CHK1-targeted anticancer therapies is associated with an increased cumulative risk of cardiac complications, which is further amplified when combined with gemcitabine. However, the underlying mechanisms remain elusive. In this study, we generated hiPSC-CMs and murine models to elucidate the mechanisms underlying CHK1 inhibition combined with gemcitabine-induced cardiotoxicity and identify potential targets for cardioprotection. Mice were intraperitoneally injected with 25 mg/kg CHK1 inhibitor AZD7762 and 20 mg/kg gemcitabine for 3 weeks. hiPSC-CMs and NMCMs were incubated with 0.5 uM AZD7762 and 0.1 uM gemcitabine for 24 h. Both pharmacological inhibition or genetic deletion of CHK1 and administration of gemcitabine induced mtROS overproduction and pyroptosis in cardiomyocytes by disrupting mitochondrial respiration, ultimately causing heart atrophy and cardiac dysfunction in mice. These toxic effects were further exacerbated with combination administration. Using mitochondria-targeting sequence-directed vectors to overexpress CHK1 in cardiomyocyte (CM) mitochondria, we identified the localization of CHK1 in CM mitochondria and its crucial role in maintaining mitochondrial redox homeostasis for the first time. Mitochondrial CHK1 function loss mediated the cardiotoxicity induced by AZD7762 and CHK1-knockout. Mechanistically, mitochondrial CHK1 directly phosphorylates SIRT3 and promotes its expression within mitochondria. On the contrary, both AZD7762 or CHK1-knockout and gemcitabine decreased mitochondrial SIRT3 abundance, thus resulting in respiration dysfunction. Further hiPSC-CMs and mice experiments demonstrated that SIRT3 overexpression maintained mitochondrial function while alleviating CM pyroptosis, and thereby improving mice cardiac function. In summary, our results suggest that targeting SIRT3 could represent a novel therapeutic approach for clinical prevention and treatment of cardiotoxicity induced by CHK1 inhibition and gemcitabine.
Asunto(s)
Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Células Madre Pluripotentes Inducidas , Sirtuina 3 , Animales , Ratones , Cardiotoxicidad/metabolismo , Gemcitabina , Homeostasis , Células Madre Pluripotentes Inducidas/metabolismo , Mitocondrias/metabolismo , Miocitos Cardíacos , Oxidación-Reducción , Sirtuina 3/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismoRESUMEN
Adult mammals have limited potential for cardiac regeneration after injury. In contrast, neonatal mouse heart, up to 7 days post birth, can completely regenerate after injury. Therefore, identifying the key factors promoting the proliferation of endogenous cardiomyocytes (CMs) is a critical step in the development of cardiac regeneration therapies. In our previous study, we predicted that mitogen-activated protein kinase (MAPK) interacting serine/threonine-protein kinase 2 (MNK2) has the potential of promoting regeneration by using phosphoproteomics and iGPS algorithm. Here, we aimed to clarify the role of MNK2 in cardiac regeneration and explore the underlying mechanism. In vitro, MNK2 overexpression promoted, and MNK2 knockdown suppressed cardiomyocyte proliferation. In vivo, inhibition of MNK2 in CMs impaired myocardial regeneration in neonatal mice. In adult myocardial infarcted mice, MNK2 overexpression in CMs in the infarct border zone activated cardiomyocyte proliferation and improved cardiac repair. In CMs, MNK2 binded to eIF4E and regulated its phosphorylation level. Knockdown of eukaryotic translation initiation factor (eIF4E) impaired the proliferation-promoting effect of MNK2 in CMs. MNK2-eIF4E axis stimulated CMs proliferation by activating cyclin D1. Our study demonstrated that MNK2 kinase played a critical role in cardiac regeneration. Over-expression of MNK2 promoted cardiomyocyte proliferation in vitro and in vivo, at least partly, by activating the eIF4E-cyclin D1 axis. This investigation identified a novel target for heart regenerative therapy.
Asunto(s)
Factor 4E Eucariótico de Iniciación , Infarto del Miocardio , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Ciclina D1/metabolismo , Factor 4E Eucariótico de Iniciación/metabolismo , Mamíferos/metabolismo , Ratones , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , FosforilaciónRESUMEN
Pyroptosis is associated with various cardiovascular diseases. Increasing evidence suggests that long noncoding RNAs (lncRNAs) have been implicated in gene regulation, but how lncRNAs participate in the regulation of pyroptosis in the heart remains largely unknown. In this study, we aimed to explore the antipyroptotic effects of lncRNA FGF9-associated factor (FAF) in acute myocardial infarction (AMI). The expression patterns of lncRNA FAF, miR-185-5p and P21 activated kinase 2 (PAK2) were detected in hypoxia/ischaemia-induced cardiomyocytes. Hoechst 33342/PI staining, lactate dehydrogenase (LDH) release assay, immunofluorescence and Western blotting were conducted to assay cell pyroptosis. The interaction between lncRNA FAF, miR-185-5p and PAK2 was verified by bioinformatics analysis, small RNA sequencing luciferase reporter assay and qRT-PCR. The expression of LncRNA FAF was downregulated in hypoxic cardiomyocytes and myocardial tissues. Overexpression of lncRNA FAF could attenuate cardiomyocyte pyroptosis, improve cell viability and reduce infarct size during the procession of AMI. Moreover, lncRNA FAF was confirmed as a sponge of miR-185-5p and promoted PAK2 expression in cardiomyocytes. Collectively, our findings reveal a novel lncRNA FAF/miR-185-5p/PAK2 axis as a crucial regulator in cardiomyocyte pyroptosis, which might be a potential therapeutic target of AMI.
Asunto(s)
MicroARNs , Infarto del Miocardio , Miocitos Cardíacos , ARN Largo no Codificante , Quinasas p21 Activadas , Apoptosis , Humanos , Hipoxia/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Piroptosis/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismoRESUMEN
Background: Ventricular arrhythmias (VAs) mainly occur in the early post-myocardial infarction (MI) period. However, studies examining the association between total myocardial ischemia time interval and the risk of new-onset VAs during a long-term follow-up are scarce. Methods: This study (symptom-to-balloon time and VEntricular aRrhYthmias in patients with STEMI, VERY-STEMI study) was a multicenter, observational cohort and real-world study, which included patients with ST-segment elevation MI (STEMI) undergoing percutaneous coronary intervention (PCI). The primary endpoint was cumulative new-onset VAs during follow-up. The secondary endpoints were the major adverse cardiovascular events (MACE) and changes in left ventricular ejection fraction (ΔLVEF, %). Results: A total of 517 patients with STEMI were included and 236 primary endpoint events occurred. After multivariable adjustments, compared to patients with S2BT of 24 h-7d, those with S2BT ≤ 24 h and S2BT > 7d had a lower risk of primary endpoint. RCS showed an inverted U-shaped relationship between S2BT and the primary endpoint, with an S2BT of 68.4 h at the inflection point. Patients with S2BT ≤ 24 h were associated with a lower risk of MACE and a 4.44 increase in LVEF, while there was no significant difference in MACE and LVEF change between the S2BT > 7d group and S2BT of 24 h-7d group. Conclusions: S2BT of 24 h-7d in STEMI patients was associated with a higher risk of VAs during follow-up. There was an inverted U-shaped relationship between S2BT and VAs, with the highest risk at an S2BT of 68.4 h.
RESUMEN
BACKGROUND: Mitochondrial dysfunction is linked to myocardial ischemia-reperfusion (I/R) injury. Checkpoint kinase 1 (CHK1) could facilitate cardiomyocyte proliferation, however, its role on mitochondrial function in I/R injury remains unknown. METHODS: To investigate the role of CHK1 on mitochondrial function following I/R injury, cardiomyocyte-specific knockout/overexpression mouse models were generated. Adult mouse cardiomyocytes (AMCMs) were isolated for in vitro study. Mass spectrometry-proteomics analysis and protein co-immunoprecipitation assays were conducted to dissect the molecular mechanism. RESULTS: CHK1 was downregulated in myocardium post I/R and AMCMs post oxygen-glucose deprivation/reoxygenation (OGD/R). In vivo, CHK1 overexpression protected against I/R induced cardiac dysfunction, while heterogenous CHK1 knockout exacerbated cardiomyopathy. In vitro, CHK1 inhibited OGD/R-induced cardiomyocyte apoptosis and bolstered cardiomyocyte survival. Mechanistically, CHK1 attenuated oxidative stress and preserved mitochondrial metabolism in cardiomyocytes under I/R. Moreover, disrupted mitochondrial homeostasis in I/R myocardium was restored by CHK1 through the promotion of mitochondrial biogenesis and mitophagy. Through mass spectrometry analysis following co-immunoprecipitation, SIRT1 was identified as a direct target of CHK1. The 266-390 domain of CHK1 interacted with the 160-583 domain of SIRT1. Importantly, CHK1 phosphorylated SIRT1 at Thr530 residue, thereby inhibiting SMURF2-mediated degradation of SIRT1. The role of CHK1 in maintaining mitochondrial dynamics control and myocardial protection is abolished by SIRT1 inhibition, while inactivated mutation of SIRT1 Thr530 fails to reverse the impaired mitochondrial dynamics following CHK1 knockdown. CHK1 Δ390 amino acids (aa) mutant functioned similarly to full-length CHK1 in scavenging ROS and maintaining mitochondrial dynamics. Consistently, cardiac-specific SIRT1 knockdown attenuated the protective role of CHK1 in I/R injury. CONCLUSIONS: Our findings revealed that CHK1 mitigates I/R injury and restores mitochondrial dynamics in cardiomyocytes through a SIRT1-dependent mechanism.
RESUMEN
BACKGROUND: The regenerative capacity of the adult mammalian hearts is limited. Numerous studies have explored mechanisms of adult cardiomyocyte cell-cycle withdrawal. This translational study evaluated the effects and underlying mechanism of rhCHK1 (recombinant human checkpoint kinase 1) on the survival and proliferation of cardiomyocyte and myocardial repair after ischemia/reperfusion injury in swine. METHODS AND RESULTS: Intramyocardial injection of rhCHK1 protein (1 mg/kg) encapsulated in hydrogel stimulated cardiomyocyte proliferation and reduced cardiac inflammation response at 3 days after ischemia/reperfusion injury, improved cardiac function and attenuated ventricular remodeling, and reduced the infarct area at 28 days after ischemia/reperfusion injury. Mechanistically, multiomics sequencing analysis demonstrated enrichment of glycolysis and mTOR (mammalian target of rapamycin) pathways after rhCHK1 treatment. Co-Immunoprecipitation (Co-IP) experiments and protein docking prediction showed that CHK1 (checkpoint kinase 1) directly bound to and activated the Serine 37 (S37) and Tyrosine 105 (Y105) sites of PKM2 (pyruvate kinase isoform M2) to promote metabolic reprogramming. We further constructed plasmids that knocked out different CHK1 and PKM2 amino acid domains and transfected them into Human Embryonic Kidney 293T (HEK293T) cells for CO-IP experiments. Results showed that the 1-265 domain of CHK1 directly binds to the 157-400 amino acids of PKM2. Furthermore, hiPSC-CM (human iPS cell-derived cardiomyocyte) in vitro and in vivo experiments both demonstrated that CHK1 stimulated cardiomyocytes renewal and cardiac repair by activating PKM2 C-domain-mediated cardiac metabolic reprogramming. CONCLUSIONS: This study demonstrates that the 1-265 amino acid domain of CHK1 binds to the 157-400 domain of PKM2 and activates PKM2-mediated metabolic reprogramming to promote cardiomyocyte proliferation and myocardial repair after ischemia/reperfusion injury in adult pigs.
Asunto(s)
Proliferación Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Modelos Animales de Enfermedad , Daño por Reperfusión Miocárdica , Miocitos Cardíacos , Animales , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Humanos , Piruvato Quinasa/metabolismo , Piruvato Quinasa/genética , Células HEK293 , Porcinos , Reprogramación Celular , Proteínas de Unión a Hormona Tiroide , Regeneración , Unión Proteica , Sus scrofa , Remodelación Ventricular/fisiología , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Metabolismo Energético/efectos de los fármacos , Hormonas Tiroideas/metabolismo , Reprogramación MetabólicaRESUMEN
The peroxisome is a versatile organelle that performs diverse metabolic functions. PEX3, a critical regulator of the peroxisome, participates in various biological processes associated with the peroxisome. Whether PEX3 is involved in peroxisome-related redox homeostasis and myocardial regenerative repair remains elusive. We investigate that cardiomyocyte-specific PEX3 knockout (Pex3-KO) results in an imbalance of redox homeostasis and disrupts the endogenous proliferation/development at different times and spatial locations. Using Pex3-KO mice and myocardium-targeted intervention approaches, the effects of PEX3 on myocardial regenerative repair during both physiological and pathological stages are explored. Mechanistically, lipid metabolomics reveals that PEX3 promotes myocardial regenerative repair by affecting plasmalogen metabolism. Further, we find that PEX3-regulated plasmalogen activates the AKT/GSK3ß signaling pathway via the plasma membrane localization of ITGB3. Our study indicates that PEX3 may represent a novel therapeutic target for myocardial regenerative repair following injury.
Asunto(s)
Membrana Celular , Integrina beta3 , Ratones Noqueados , Regeneración , Animales , Masculino , Ratones , Membrana Celular/metabolismo , Proliferación Celular , Lesiones Cardíacas/metabolismo , Lesiones Cardíacas/patología , Lesiones Cardíacas/genética , Integrina beta3/metabolismo , Integrina beta3/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Plasmalógenos/metabolismo , Transducción de SeñalRESUMEN
The potential of circular RNAs (circRNAs) as biomarkers and therapeutic targets is becoming increasingly evident, yet their roles in cardiac regeneration and myocardial renewal remain largely unexplored. Here, we investigated the function of circIGF1R and related mechanisms in cardiac regeneration. Through analysis of circRNA sequencing data from neonatal and adult cardiomyocytes, circRNAs associated with regeneration were identified. Our data showed that circIGF1R expression was high in neonatal hearts, decreased with postnatal maturation, and up-regulated after cardiac injury. The elevation was validated in patients diagnosed with acute myocardial infarction (MI) within 1 week. In human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and myocardial tissue from mice after apical resection and MI, we observed that circIGF1R overexpression enhanced cardiomyocyte proliferation, reduced apoptosis, and mitigated cardiac dysfunction and fibrosis, while circIGF1R knockdown impeded endogenous cardiac renewal. Mechanistically, we identified circIGF1R binding proteins through circRNA precipitation followed by mass spectrometry. RNA pull-down Western blot and RNA immunoprecipitation demonstrated that circIGF1R directly interacted with DDX5 and augmented its protein level by suppressing ubiquitin-dependent degradation. This subsequently triggered the ß-catenin signaling pathway, leading to the transcriptional activation of cyclin D1 and c-Myc. The roles of circIGF1R and DDX5 in cardiac regeneration were further substantiated through site-directed mutagenesis and rescue experiments. In conclusion, our study highlights the pivotal role of circIGF1R in facilitating heart regeneration and repair after ischemic insults. The circIGF1R/DDX5/ß-catenin axis emerges as a novel therapeutic target for enhancing myocardial repair after MI, offering promising avenues for the development of regenerative therapies.
RESUMEN
Background The neonatal heart maintains its entire regeneration capacity within days after birth. Using quantitative phosphoproteomics technology, we identified that SGK3 (serine/threonine-protein kinase 3) in the neonatal heart is highly expressed and activated after myocardial infarction. This study aimed to uncover the function and related mechanisms of SGK3 on cardiomyocyte proliferation and cardiac repair after apical resection or ischemia/reperfusion injury. Methods and Results The effect of SGK3 on proliferation and oxygen glucose deprivation/reoxygenation- induced apoptosis in isolated cardiomyocytes was evaluated using cardiomyocyte-specific SGK3 overexpression or knockdown adenovirus5 vector. In vivo, gain- and loss-of-function experiments using cardiomyocyte-specific adeno-associated virus 9 were performed to determine the effect of SGK3 in cardiomyocyte proliferation and cardiac repair after apical resection or ischemia/reperfusion injury. In vitro, overexpression of SGK3 enhanced, whereas knockdown of SGK3 decreased, the cardiomyocyte proliferation ratio. In vivo, inhibiting the expression of SGK3 shortened the time window of cardiac regeneration after apical resection in neonatal mice, and overexpression of SGK3 significantly promoted myocardial repair and cardiac function recovery after ischemia/reperfusion injury in adult mice. Mechanistically, SGK3 promoted cardiomyocyte regeneration and myocardial repair after cardiac injury by inhibiting GSK-3ß (glycogen synthase kinase-3ß) activity and upregulating ß-catenin expression. SGK3 also upregulated the expression of cell cycle promoting genes G1/S-specific cyclin-D1, c-myc (cellular-myelocytomatosis viral oncogene), and cdc20 (cell division cycle 20), but downregulated the expression of cell cycle negative regulators cyclin kinase inhibitor P 21 and cyclin kinase inhibitor P 27. Conclusions Our study reveals a key role of SGK3 on cardiac repair after apical resection or ischemia/reperfusion injury, which may reopen a novel therapeutic option for myocardial infarction.