Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 704: 149661, 2024 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-38417343

RESUMEN

To date only four recombinant growth factors, including Filgrastim (rhG-CSF), have been approved by FDA as radiomitigators to ameliorate hematopoietic acute radiation syndrome (H-ARS). These approved agents are not stable under room-temperature, needing to be stored at 2-8 °C, and would not be feasible in a mass casualty scenario where rapid and cost-effective intervention is crucial. Delta-tocotrienol (δ-T3H), the most potent G-CSF-inducing agent among vitamin E isoforms, exhibited efficiency and selectivity on G-CSF production in comparison with TLR and STING agonists in mice. Five-dose δ-T3H was utilized as the optimal therapeutic regimen due to long-term G-CSF production and the best peripheral blood (PB) recovery of irradiated mice. Comparable with rhG-CSF, sequential administration of δ-T3H post-irradiation improved hematologic recovery and accelerated the regeneration of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) in the bone marrow (BM) and spleen of 6.5Gy irradiated mice; and consistently enhanced repopulation of BM-HSCs. In 4.0Gy irradiated nonhuman primates, δ-T3H exhibited comparable efficacy as rhG-CSF to promote PB recovery and colony-formation of BM-HPCs. Altogether, we demonstrated that sequential administration of delta-tocotrienol ameliorates radiation-induced myelosuppression in mice and non-human primates through inducing G-CSF production, indicated δ-T3H as a promising radiomitigator for the management of H-ARS, particularly in a mass casualty scenario.


Asunto(s)
Médula Ósea , Células Madre Hematopoyéticas , Vitamina E , Animales , Ratones , Médula Ósea/patología , Médula Ósea/efectos de la radiación , Factor Estimulante de Colonias de Granulocitos/efectos de los fármacos , Factor Estimulante de Colonias de Granulocitos/metabolismo , Primates , Proteínas Recombinantes/farmacología , Vitamina E/análogos & derivados , Vitamina E/uso terapéutico
2.
Molecules ; 29(4)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38398568

RESUMEN

Ionizing radiation (IR)-induced hematopoietic injury has become a global concern in the past decade. The underlying cause of this condition is a compromised hematopoietic reserve, and this kind of hematopoietic injury could result in infection or bleeding, in addition to lethal mishaps. Therefore, developing an effective treatment for this condition is imperative. Fluacrypyrim (FAPM) is a recognized effective inhibitor of STAT3, which exhibits anti-inflammation and anti-tumor effects in hematopoietic disorders. In this context, the present study aimed to determine whether FAPM could serve as a curative agent in hematopoietic-acute radiation syndrome (H-ARS) after total body irradiation (TBI). The results revealed that the peritoneally injection of FAPM could effectively promote mice survival after lethal dose irradiation. In addition, promising recovery of peripheral blood, bone marrow (BM) cell counts, hematopoietic stem cell (HSC) cellularity, BM colony-forming ability, and HSC reconstituting ability upon FAPM treatment after sublethal dose irradiation was noted. Furthermore, FAPM could reduce IR-induced apoptosis in hematopoietic stem and progenitor cells (HSPCs) both in vitro and in vivo. Specifically, FAPM could downregulate the expressions of p53-PUMA pathway target genes, such as Puma, Bax, and Noxa. These results suggested that FAPM played a protective role in IR-induced hematopoietic damage and that the possible underlying mechanism was the modulation of apoptotic activities in HSCs.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Células Madre Hematopoyéticas , Pirimidinas , Ratones , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Acrilatos/farmacología , Apoptosis , Irradiación Corporal Total , Ratones Endogámicos C57BL
3.
Biochem Biophys Res Commun ; 502(1): 110-115, 2018 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-29787755

RESUMEN

Differentiation therapies have been proposed to overcome the impaired cell differentiation in acute myeloid leukemia (AML). However, thus far the all-trans retinoic acid-based differentiation therapy has been the only successful modality in treating acute promyelocytic leukemia. Here, we showed that vibsanin A, a novel protein kinase C (PKC) activator, sensitized AML cells to tyrosine kinase inhibitor (TKI)-induced differentiation. Vibsanin A augmented the ability of TKIs to induce growth inhibition and G1 cell cycle arrest of AML cells. Mechanistically, PKC activation was involved in the differentiation-inducing effects of combining vibsanin A with TKIs. Moreover, we found that vibsanin A enhanced TKI-induced Lyn expression and suppression of Lyn interfered with AML cell differentiation, indicating an essential role for Lyn expression in the combination-induced differentiation. Finally, combining vibsanin A and TKIs enhanced the activation of the Raf/MEK/ERK cascade. Together, this is the first study to evaluate the synergy of vibsanin A and TKIs in AML cell differentiation. Our study lays the foundation in assessing new opportunities for the combination of vibsanin A and TKIs as a promising approach for future differentiation therapy.


Asunto(s)
Diterpenos/farmacología , Activadores de Enzimas/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Proteína Quinasa C/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Familia-src Quinasas/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Células Mieloides/citología , Células Mieloides/efectos de los fármacos , Células Mieloides/metabolismo , Células Mieloides/patología , Proteínas Tirosina Quinasas/metabolismo
4.
Mol Cell Biochem ; 391(1-2): 85-94, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24615392

RESUMEN

Thrombopoietin (TPO) can regulate hematopoiesis and megakaryopoiesis via activation of its receptor, c-Mpl, and multiple downstream signal transduction pathways. Using the cytoplasmic domain of Mpl as bait, we performed yeast two-hybrid screening, and found that the protein Atp5d might associate with Mpl. Atp5d is known as the δ subunit of mitochondrial ATP synthase, but little is known about the function of dissociative Atp5d. The interaction between Mpl and Atp5d was confirmed by the yeast two-hybrid system, mammalian two-hybrid assay, pull-down experiment, and co-immunoprecipitation study in vivo and in vitro. An additional immunofluorescence assay showed that the two proteins can colocalize along the plasma membrane in the cytoplasm. Using the yeast two-hybrid system, we tested a series of cytoplasmic truncated mutations for their ability to bind Atp5d and found an association between Atp5d and the Aa98-113 domain of Mpl. The dissociation of Atp5d from Mpl after TPO stimulation suggests that Atp5d may be a new component of TPO signaling.


Asunto(s)
ATPasas de Translocación de Protón/metabolismo , Receptores de Trombopoyetina/metabolismo , Animales , Línea Celular , Humanos , Espacio Intracelular/metabolismo , Ratones , ATPasas de Translocación de Protón Mitocondriales , Unión Proteica/efectos de los fármacos , Dominios y Motivos de Interacción de Proteínas , Mapas de Interacción de Proteínas/efectos de los fármacos , Estructura Terciaria de Proteína , Receptores de Trombopoyetina/química , Reproducibilidad de los Resultados , Trombopoyetina/farmacología , Técnicas del Sistema de Dos Híbridos
5.
Eur J Med Chem ; 269: 116346, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38518524

RESUMEN

Considering the increasing risk of nuclear attacks worldwide, the development of develop potent and safe radioprotective agents for nuclear emergencies is urgently needed. γ-tocotrienol (GT3) and δ-tocotrienol (DT3) have demonstrated a potent radioprotective effect by inducing the production of granulocyte-colony stimulating factor (G-CSF) in vivo. However, their application is limited because of their low bioavailability. The utilization of ester prodrugs can be an effective strategy for modifying the pharmacokinetic properties of drug molecules. In this study, we initially confirmed that DT3 exhibited the most significant potential for inducing G-CSF effects among eight natural vitamin E homologs. Consequently, we designed and synthesized a series of DT3 ester and ether derivatives, leading to improved radioprotective effects. The metabolic study conducted in vitro and in vivo has identified DT3 succinate 5b as a prodrug of DT3 with an approximately seven-fold higher bioavailability compared to DT3 alone. And DT3 ether derivative 8a were relatively stable and approximately 4 times more bioavailable than DT3 prototype. Furthermore, 5b exhibited superior ability to mitigate radiation-induced pancytopenia, enhance the recovery of bone marrow hematopoietic stem and progenitor cells, and promote splenic extramedullary hematopoiesis in sublethal irradiated mice. Similarly, 8a shown potential radiation protection, but its radiation protection is less than DT3. Based on these findings, we identified 5b as a DT3 prodrug, and providing an attractive candidate for further drug development.


Asunto(s)
Sistema Hematopoyético , Profármacos , Protección Radiológica , Vitamina E/análogos & derivados , Animales , Ratones , Factor Estimulante de Colonias de Granulocitos/farmacología , Ésteres/farmacología , Éteres , Profármacos/farmacología , Granulocitos
6.
Int J Cancer ; 127(6): 1259-70, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20087863

RESUMEN

STAT3 protein has an important role in oncogenesis and is a promising anticancer target. Herein, we demonstrate that a novel small molecule fluacrypyrim (FAPM) inhibits the growth of leukemia cells by a predominant G1 arrest with significant decrease of the protein and mRNA levels of cyclin D1. As cyclin D1 is transcriptionally regulated by STAT3, FAPM is then shown to markedly inhibit the STAT3 phosphorylation with marginal effect on the other signal transducers and activators of transcription, and without effect on phosphoinositide-3-kinase and mitogen-activated protein kinase pathways. Further analysis shows that FAPM significantly increases the protein tyrosine phosphatases (PTPs) activity in a dose-dependent manner, and the inhibition of PTP activation by sodium pervanadate reverses FAPM-induced suppression of STAT3 tyrosine phosphorylation, indicating an important role of PTP in the action of FAPM. Finally, FAPM treatment results in selective suppression of STAT3-mediated transcriptional activity and its downstream effectors, and subsequent induction of growth arrest and apoptosis in STAT3-dependent cancer cell lines. This study therefore identifies FAPM as a potent STAT3 activation inhibitor with possible therapeutic potential against malignancies with constitutive STAT3 activation.


Asunto(s)
Acrilatos/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Pirimidinas/farmacología , Factor de Transcripción STAT3/antagonistas & inhibidores , Secuencia de Bases , Western Blotting , Neoplasias de la Mama/patología , Ciclina D/genética , Cartilla de ADN , Regulación hacia Abajo/efectos de los fármacos , Femenino , Citometría de Flujo , Fase G1/efectos de los fármacos , Células HL-60 , Humanos , Células K562 , Leucemia/metabolismo , Leucemia/patología , Fosforilación , Proteínas Tirosina Fosfatasas/metabolismo , Factor de Transcripción STAT3/metabolismo , Transcripción Genética/efectos de los fármacos
7.
Free Radic Biol Med ; 153: 1-11, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32222468

RESUMEN

In mass casualty events involving radiation exposure, there is a substantial unmet need for identifying and developing an orally bioavailable agent that can be used to protect the hematopoietic stem cell pool and regenerate hematopoiesis after radiation injury. Dimethyl sulfoxide (DMSO), a free-radical scavenger, has shown therapeutic benefits in many preclinical and clinical studies. This study investigates the radioprotective effects of DMSO on oral administration. Single dose of oral DMSO administrated before irradiation conferred 100% survival of C57BL6/J mice receiving otherwise lethal as well as super-lethal radiation dose, with wide radioprotective time frame (from 15min to 4h). Oral DMSO not only protected radiation-induced acute hematopoietic stem and progenitor cell (HSPC) injury, but also ameliorated long-term BM suppression following irradiation in mice. Mechanistically, DMSO directly protected HSPC survival after irradiation in vitro and in vivo, whereas no radioprotective effect was seen in MLL-AF9-induced leukemia cells. Unexpectedly, DMSO treatment did not inhibit radiation-induced HSPC apoptosis, and the HSPC survival from Trp53-and PUMA-deficient mice after irradiation was also protected by DMSO. In conclusion, our findings demonstrate the radioprotective efficacy of oral DMSO. Given its oral efficacy and little toxicity, DMSO is an attractive candidate for human use in a wide variety of settings, including nuclear accidents and medical radiation.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Protectores contra Radiación , Animales , Apoptosis , Dimetilsulfóxido/farmacología , Células Madre Hematopoyéticas , Ratones , Protectores contra Radiación/farmacología
8.
Int J Radiat Oncol Biol Phys ; 108(5): 1357-1367, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32758640

RESUMEN

PURPOSE: Recombinant human thrombopoietin (rhTPO) has been evaluated as a therapeutic intervention for radiation-induced myelosuppression. However, the immunogenicity induced by a repeated-dosing strategy raises concerns about the therapeutic use of rhTPO. In this study, single-dose administration of rhTPO was evaluated for efficacy in the hematopoietic response and survival effect on mice and nonhuman primates exposed to total body irradiation (TBI). METHODS AND MATERIALS: Survival of lethally (9.0 Gy) irradiated C57BL/6J male mice was observed for 30 days after irradiation. Hematologic evaluations were performed on C57BL/6J male mice given a sublethal dose of radiation (6.5 Gy). Furthermore, in sublethally irradiated mice, we performed bone marrow (BM) histologic evaluation and evaluated BM-derived clonogenic activity. Next, the proportion and number of hematopoietic stem cells (HSCs) were analyzed. Competitive repopulation experiments were conducted to assess the multilineage engraftment of irradiated HSCs after BM transplantation. Flow cytometry was used to evaluate DNA damage, cell apoptosis, and cell cycle stage in HSCs after irradiation. Finally, we evaluated the efficacy of a single dose of rhTPO administered after 7 Gy TBI in male and female rhesus monkeys. RESULTS: A single administration of rhTPO 2 hours after irradiation significantly mitigated TBI-induced death in mice. rhTPO promoted multilineage hematopoietic recovery, increasing peripheral blood cell counts, BM cellularity, and BM colony-forming ability. rhTPO administration led to an accelerated recovery of BM HSC frequency and multilineage engraftment after transplantation. rhTPO treatment reduced radiation-induced DNA damage and apoptosis and promoted HSC proliferation after TBI. Notably, a single administration of rhTPO significantly promoted multilineage hematopoietic recovery and improved survival in nonhuman primates after TBI. CONCLUSIONS: These findings indicate that early intervention with a single administration of rhTPO may represent a promising and effective radiomitigative strategy for victims of radiation disasters.


Asunto(s)
Médula Ósea/efectos de la radiación , Traumatismos Experimentales por Radiación/prevención & control , Trombopoyetina/administración & dosificación , Irradiación Corporal Total/efectos adversos , Animales , Apoptosis , Recuento de Células Sanguíneas , Médula Ósea/efectos de los fármacos , Médula Ósea/lesiones , Médula Ósea/patología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/efectos de la radiación , Ciclo Celular , Daño del ADN/efectos de los fármacos , Femenino , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de la radiación , Sistema Hematopoyético/efectos de los fármacos , Sistema Hematopoyético/lesiones , Sistema Hematopoyético/patología , Sistema Hematopoyético/efectos de la radiación , Humanos , Macaca mulatta , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Recombinantes/administración & dosificación , Factores de Tiempo
9.
J Biomed Biotechnol ; 2009: 973754, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19672324

RESUMEN

Imidazoline receptors were first proposed by Bousquet et al., when they studied antihypertensive effect of clonidine. A strong candidate for I1R, known as imidazoline receptor antisera-selected protein (IRAS), has been cloned from human hippocampus. We reported that IRAS mediated agmatine-induced inhibition of opioid dependence in morphine-dependent cells. To elucidate the functional and structure properties of I1R, we developed the newly monoclonal antibody against the N-terminal hIRAS region including the PX domain (10-120aa) through immunization of BALB/c mice with the NusA-IRAS fusion protein containing an IRAS N-terminal (10-120aa). Stable hybridoma cell lines were established and monoclonal antibodies specifically recognized full-length IRAS proteins in their native state by immunoblotting and immunoprecipitation. Monoclonal antibodies stained in a predominantly punctate cytoplasmic pattern when applied to IRAS-transfected HEK293 cells by indirect immunofluorescence assays and demonstrated excellent reactivity in flow immunocytometry. These monoclonal antibodies will provide powerful reagents for the further investigation of hIRAS protein functions.


Asunto(s)
Anticuerpos Monoclonales/biosíntesis , Receptores de Imidazolina/inmunología , Péptidos y Proteínas de Señalización Intracelular/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Línea Celular , Escherichia coli/genética , Citometría de Flujo , Humanos , Hibridomas/metabolismo , Receptores de Imidazolina/genética , Receptores de Imidazolina/metabolismo , Immunoblotting , Inmunohistoquímica , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
10.
Int J Radiat Oncol Biol Phys ; 103(1): 217-228, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30103023

RESUMEN

PURPOSE: The risk of radiation exposure is considered to have increased in recent years. For convenience and simple administration, development of an effective orally administered radioprotective agent is highly desirable. The steroid 5-androstene-3ß, 17ß-diol (5-AED) has been evaluated as both a radioprotector and a radiomitigator in mice and nonhuman primates; however, poor oral bioavailability has limited its development. A variant compound-17α-ethinyl-androst-5-ene-3ß, 17ß-diol (EAD)-exhibits significant oral bioavailability. We investigated the radioprotective effects of EAD via oral administration in mice. METHODS AND MATERIALS: Survival assays were performed in lethally (9.0-10.0 Gy) irradiated mice. Peripheral blood cell counts were monitored in lethally (9.5 Gy) or sublethally (6.5 Gy) irradiated mice. We performed histologic analysis of bone marrow (BM) and frequency and functional analysis of hematopoietic stem and progenitor cells in mice irradiated with 6.5 Gy. To investigate multilineage engraftment of irradiated hematopoietic stem cells after BM transplantation, competitive repopulation assays were conducted. Plasma granulocyte colony-stimulating factor was measured by enzyme-linked immunosorbent assay. RESULTS: Oral administration of EAD on 3 consecutive days before irradiation conferred 100% survival in mice, against otherwise 100% death, at a 9.5-Gy lethal dose of total body irradiation. EAD ameliorated radiation-induced pancytopenia at the same dose. EAD augmented BM cellular recovery and colony-forming ability, promoted hematopoietic stem and progenitor cell recovery, and expanded the pool of functionally superior hematopoietic stem cells in the BM of sublethally irradiated mice. Unlike 5-AED, EAD did not increase granulocyte colony-stimulating factor levels in mice and exhibited no therapeutic effects on hematologic recovery after irradiation; nevertheless, its radioprotective efficacy was superior to that of 5-AED. CONCLUSIONS: Our findings demonstrate the radioprotective efficacy of EAD and reveal that the 17α-ethinyl group is essential for its oral activity. Given its oral efficacy and low toxicity, EAD has potential as an optimal radioprotector for use by first responders, as well as at-risk civilian populations.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos/fisiología , Células Madre Hematopoyéticas/efectos de la radiación , Protectores contra Radiación/farmacología , Animales , Trasplante de Médula Ósea , Células Madre Hematopoyéticas/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Irradiación Corporal Total
11.
Int J Radiat Oncol Biol Phys ; 102(5): 1577-1589, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30092334

RESUMEN

PURPOSE: Oral mucositis is one of the most prevalent side effects in patients undergoing radiation therapy for head and neck cancers. Current therapeutic agents such as palifermin recombinant human keratinocyte growth factor and amifostine do not efficiently or fully prevent mucositis. Dimethyl sulfoxide (DMSO), a free-radical scavenger, has shown therapeutic benefits in many preclinical and clinical studies. This study aimed to investigate the efficacy of DMSO in a clinically relevant mouse model of acute, radiation-induced oral mucositis. METHODS AND MATERIALS: Oral mucositis was induced by a high single and fractioned irradiation of the head and neck area in C57BL/6J mice, and the effects of DMSO (by intraperitoneal injection) were assessed by macroscopic and histopathological examination. Epithelial stem and progenitor cells were analyzed by immunohistochemical staining of p63 and Ki-67, and DNA double-strand breaks (DSBs) were visualized by immunofluorescence detection of γ-H2AX. Tumor xenograft was obtained using CAL-27 cells. RESULTS: Pretreatment with DMSO protected the oral mucosa from severe acute radiation injury, reduced the extent of radiation-induced weight loss, and had no significant effects on tumor weight in irradiated or nonirradiated xenograft mice. Furthermore, the efficacy of DMSO was superior to that of recombinant human keratinocyte growth factor and amifostine. DMSO treatment prevented the loss of proliferative lingual epithelial stem and progenitor cells upon irradiation. More interestingly, the average levels of γ-H2AX foci were significantly decreased in p63-positive epithelial stem cells at 6 hours, but not at 2 hours, after irradiation, indicating that DMSO facilitated DNA DSB repair rather than suppressing the indirect action of irradiation. CONCLUSIONS: DMSO prevents the loss of proliferative lingual epithelial stem and progenitor cells upon irradiation by facilitating DNA DSB repair, thereby protecting against radiation-induced mucositis without tumor protection. Given its high efficacy and low toxicity, DMSO could be a potential treatment option to prevent radiation-induced oral mucositis.


Asunto(s)
Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Dimetilsulfóxido/farmacología , Traumatismos Experimentales por Radiación/prevención & control , Células Madre/efectos de los fármacos , Estomatitis/prevención & control , Animales , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Epitelio/patología , Neoplasias de Cabeza y Cuello/radioterapia , Masculino , Ratones , Ratones Endogámicos C57BL , Traumatismos Experimentales por Radiación/genética , Traumatismos Experimentales por Radiación/patología , Células Madre/patología , Células Madre/efectos de la radiación , Estomatitis/etiología , Estomatitis/genética , Estomatitis/patología
12.
Sci Rep ; 7: 40380, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28145432

RESUMEN

α-tocopherol succinate (α-TOS), γ-tocotrienol (GT3) and δ-tocotrienol (DT3) have drawn large attention due to their efficacy as radioprotective agents. α-TOS has been shown to act superior to α-tocopherol (α-TOH) in mice by reducing lethality following total body irradiation (TBI). Because α-TOS has been shown to act superior to α-tocopherol (α-TOH) in mice by reducing lethality following total body irradiation (TBI), we hypothesized succinate may be contribute to the radioprotection of α-TOS. To study the contributions of succinate and to identify stronger radioprotective agents, we synthesized α-, γ- and δ-TOS. Then, we evaluated their radioprotective effects and researched further mechanism of δ-TOS on hematological recovery post-irradiation. Our results demonstrated that the chemical group of succinate enhanced the effects of α-, γ- and δ-TOS upon radioprotection and granulocyte colony-stimulating factor (G-CSF) induction, and found δ-TOS a higher radioprotective efficacy at a lower dosage. We further found that treatment with δ-TOS ameliorated radiation-induced pancytopenia, augmenting cellular recovery in bone marrow and the colony forming ability of bone marrow cells in sublethal irradiated mice, thus promoting hematopoietic stem and progenitor cell recovery following irradiation exposure. δ-TOS appears to be an attractive radiation countermeasure without known toxicity, but further exploratory efficacy studies are still required.


Asunto(s)
Radioisótopos de Cobalto/química , Factor Estimulante de Colonias de Granulocitos/farmacología , Hematopoyesis/efectos de los fármacos , Protectores contra Radiación/farmacología , alfa-Tocoferol/análogos & derivados , Animales , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/efectos de la radiación , Ensayo de Unidades Formadoras de Colonias , Relación Dosis-Respuesta en la Radiación , Hematopoyesis/efectos de la radiación , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/efectos de la radiación , Masculino , Dosis Máxima Tolerada , Ratones Endogámicos C57BL , alfa-Tocoferol/síntesis química , alfa-Tocoferol/química , alfa-Tocoferol/farmacología
13.
Mol Cells ; 21(2): 186-91, 2006 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-16682811

RESUMEN

Severe acute respiratory syndrome-associated coronavirus (SARS-CoV), a distant member of the Group 2 coronaviruses, has recently been identified as the etiological agent of severe acute respiratory syndrome (SARS). The genome of SARS-CoV contains four structural genes that are homologous to genes found in other coronaviruses, as well as six subgroup-specific open reading frames (ORFs). ORF3 encodes a predicted 154-amino-acid protein that lacks similarity to any known protein, and is designated 3b in this article. We reported previously that SARS-CoV 3b is predominantly localized in the nucleolus, and induces G0/G1 arrest and apoptosis in transfected cells. In this study, we show that SARS-CoV 3b fused with EGFP at its N- or C- terminus co-localized with a mitochondria-specific marker in some transfected cells. Mutation analysis of SARS-CoV 3b revealed that the domain spanning amino acids 80 to 138 was essential for its mitochondria localization. These results provide new directions for studies of the role of SARS-CoV 3b protein in SARS pathogenesis.


Asunto(s)
Mitocondrias/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Proteínas no Estructurales Virales/metabolismo , Animales , Línea Celular , Colorantes Fluorescentes/metabolismo , Humanos , Mitocondrias/genética , Señales de Clasificación de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas no Estructurales Virales/genética
14.
Cancer Res ; 76(9): 2698-709, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26984756

RESUMEN

All-trans retinoic acid (ATRA)-based cell differentiation therapy has been successful in treating acute promyelocytic leukemia, a unique subtype of acute myeloid leukemia (AML). However, other subtypes of AML display resistance to ATRA-based treatment. In this study, we screened natural, plant-derived vibsane-type diterpenoids for their ability to induce differentiation of myeloid leukemia cells, discovering that vibsanin A potently induced differentiation of AML cell lines and primary blasts. The differentiation-inducing activity of vibsanin A was mediated through direct interaction with and activation of protein kinase C (PKC). Consistent with these findings, pharmacological blockade of PKC activity suppressed vibsanin A-induced differentiation. Mechanistically, vibsanin A-mediated activation of PKC led to induction of the ERK pathway and decreased c-Myc expression. In mouse xenograft models of AML, vibsanin A administration prolonged host survival and inhibited PKC-mediated inflammatory responses correlated with promotion of skin tumors in mice. Collectively, our results offer a preclinical proof of concept for vibsanin A as a myeloid differentiation-inducing compound, with potential application as an antileukemic agent. Cancer Res; 76(9); 2698-709. ©2016 AACR.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Diferenciación Celular/efectos de los fármacos , Diterpenos/farmacología , Leucemia Mieloide/patología , Fitoterapia/métodos , Animales , Western Blotting , Activación Enzimática/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa C/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa , Ensayos Antitumor por Modelo de Xenoinjerto
15.
J Mol Biol ; 339(1): 131-44, 2004 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-15123426

RESUMEN

A variety of hematopoietic factors including granulocyte macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF), interleukin 3 (IL-3) and thrombopoietin (TPO) induce a rapid increase of intracellular reactive oxygen species (ROS). ROS induces the activation of many signaling molecules, including Shc, Lck, syk, PKC, MAPK, STAT3, through inhibition of protein phosphatase. Each growth factor has a specific cell-surface receptor, which activates both unique and shared signal transduction pathways. The processes of signal transduction linking cell-surface receptor to the formation of intracellular ROS have not been elucidated fully. Ferritins are composed of two subunit types, H and L, and made of 24 subunits that sequester up to 4500 atoms of iron. When the stored iron atoms are released from H-ferritin, through iron-catalyzed reaction, they have the capacity to promote the formation of ROS. Here, the interaction of G-CSFR and H-ferritin was confirmed by yeast two-hybrid screen, mammalian two-hybrid assays, glutathione-S-transferase (GST) pull-down experiments and immunoprecipitation studies in vitro and in vivo. Additional immunofluorescence assay showed that the two proteins colocalized along the plasma membrane and partly in the cytoplasm. The binding site for H-ferritin was demonstrated to locate to the box3 motif on the C-terminal region of granulocyte colony-stimulating factor receptor (G-CSFR). Furthermore, we found the interaction of full-length G-CSFR with H-ferritin was dissociated at 30 minutes after G-CSF induction and then began to assemble at 45 minutes. The labile iron pool (LIP) is a pool of redox-active iron complexes, which is regulated tightly by the expression of H-ferritin. Experiments showed that the level of LIP increased significantly at 30 minutes after G-CSF stimulation and intracellular ROS formation changed in a pattern similar to LIP response to G-CSF in bone-marrow hematopoietic cells. G-CSF-induced changes in the level of LIP and ROS formation could be blocked by pretreatment with iron chelators that repressed the expression of H-ferritin. In addition, the phosphorylation of STAT3 induced by G-CSF was decreased in iron chelator-treated hematopoietic cells. These data suggested that LIP may be released from the dissociated H-ferritin, and then induce intracellular ROS formation in the bone-marrow hematopoietic cells. ROS, acting as a second messenger, might take part in G-CSF receptor signal transduction. So, here, a new G-CSFR-H-ferritin-LIP-ROS pathway is proposed for regulation of intracellular ROS formation in bone-marrow hematopoietic cells.


Asunto(s)
Ferritinas/metabolismo , Hierro/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocito/metabolismo , Transducción de Señal , Animales , Sitios de Unión , Médula Ósea/metabolismo , Células COS , Membrana Celular/metabolismo , Cricetinae , Citoplasma/metabolismo , Técnica del Anticuerpo Fluorescente , Glutatión Transferasa , Células Madre Hematopoyéticas/metabolismo , Humanos , Ratones , Ratones Endogámicos BALB C , Pruebas de Precipitina , Saccharomyces cerevisiae , Técnicas del Sistema de Dos Híbridos
16.
Virus Res ; 109(2): 191-202, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15763150

RESUMEN

SARS-CoV 3a protein was a unique protein of SARS coronavirus (SARS-CoV), which was identified in SARS-CoV infected cells and SARS patients' specimen. Recent studies revealed that 3a could interact specifically with many SARS-CoV structural proteins, such as M, E and S protein. Expressed 3a protein was reported to localize to Golgi complex in SARS-CoV infected cells. In this study, it was shown that 3a protein was mainly located in Golgi apparatus with different tags at N- or C-terminus. The localization pattern was similar in different transfected cells. With the assay of truncated 3a protein, it was shown that 3a might contain three transmembrane regions, and the second or third region was properly responsible for Golgi localization. By ultra-centrifugation experiment with different extraction buffers, it was confirmed that 3a was an integral membrane protein and embedded in the phospholipid bilayer. Immunofluorescence assay indicated that 3a was co-localized with M protein in Golgi complex in co-transfected cells. These results provide a new insight for further study of the 3a protein on the pathogenesis of SARS-CoV.


Asunto(s)
Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Fracciones Subcelulares/química , Proteínas Virales/análisis , Animales , Células COS , Fraccionamiento Celular , Línea Celular , Chlorocebus aethiops , Proteínas M de Coronavirus , Técnica del Anticuerpo Fluorescente , Aparato de Golgi/química , Humanos , Membranas Intracelulares/química , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/análisis , Estructura Terciaria de Proteína , Transfección , Células Vero , Proteínas del Envoltorio Viral , Proteínas de la Matriz Viral/análisis , Proteínas Virales/química , Proteínas Viroporinas
17.
Virus Res ; 114(1-2): 70-9, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16046244

RESUMEN

The open reading frame 3 (ORF3) of the severe acute respiratory syndrome coronavirus (SARS-CoV) genome encodes a predicted 154-amino acid protein, which lacks similarities to any known protein, and is named 3b. In this study, it was shown that 3b protein was predominately localized to nucleus with EGFP tag at its N- or C-terminus. The localization patterns were similar in different transfected cells. Immuno-fluorescence assay revealed that 3b protein was co-localized well with C23 in nucleolus. C23, B23 and fibrillarin all are important nucleolar proteins, which localize in the region of the nucleolus. Co-transfection of p3b-EGFP with pC23-DsRed, pB23-DsRed and pfibrillarin-DsRed further confirmed 3b's nucleolus localization. With construction of serial truncated mutants of 3b, a region (residues 134-154 aa) responsible for nucleolar localization was determinated in 3b protein. These results provide a new insight for further functional studies of SARS-CoV 3b protein.


Asunto(s)
Nucléolo Celular/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Secuencia de Aminoácidos , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Nucleofosmina , Fosfoproteínas/metabolismo , Señales de Clasificación de Proteína , Proteínas de Unión al ARN/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Transfección , Células Vero , Proteínas no Estructurales Virales/química , Nucleolina
18.
Virol J ; 2: 66, 2005 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-16107218

RESUMEN

Severe Acute Respiratory Syndrome coronavirus (SARS-CoV), cause of the life-threatening atypical pneumonia, infects many organs, such as lung, liver and immune organ, and induces parenchyma cells apoptosis and necrosis. The genome of SARS-CoV, not closely related to any of the previously characterized coronavirus, encodes replicase and four major structural proteins and a number of non-structural proteins. Published studies suggest that some non-structural proteins may play important roles in the replication, virulence and pathogenesis of viruses. Among the potential SARS-CoV non-structural proteins, 3b protein (ORF4) is predicted encoding 154 amino acids, lacking significant similarities to any known proteins. Till now, there is no report about the function of 3b protein. In this study, 3b gene was linked with the EGFP tag at the C- terminus. Through cell cycle analysis, it was found that over-expression of 3b-EGFP protein in Vero, 293 and COS-7 cells could induce cell cycle arrest at G0/G1 phase, and that especially in COS-7 cells, expression of 3b-EGFP was able to induce the increase of sub-G1 phase from 24 h after transfection, which was most obvious at 48 h. The apoptosis induction of 3b fusion protein in COS-7 cells was further confirmed by double cell labeling with 7-AAD and Annexin V, the function of 3b protein inducing cell G0/G1 arrest and apoptosis may provide a new insight for further study on the mechanism of SARS pathogenesis.


Asunto(s)
Apoptosis , Citocinesis/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , Proteínas no Estructurales Virales/fisiología , Animales , Células COS , Chlorocebus aethiops , Células Vero
19.
Cancer Lett ; 356(2 Pt B): 686-96, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25449427

RESUMEN

As acute myeloid leukemia (AML) cells are characterized by uncontrolled self-renewal and impaired cellular differentiation, induction of terminal differentiation of leukemia cells by differentiating agents has been proposed as an attractive therapeutic strategy to treat AML. Here, we demonstrated that prostratin, a potent protein kinase C (PKC) activator, inhibited the growth of myeloid leukemia cells by a predominant G1 arrest with variable induction of apoptosis. Conversely, prostratin induced significant differentiation of AML cell lines and primary AML blasts as evidenced by morphology and immunophenotyping. The effects of prostratin were PKC dependent, and activation of mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) kinase (MEK) 1/2 by PKC was required for prostratin-induced cell differentiation. Consequently, prostratin reprogrammed transcriptional factor expression, and ectopic expression of c-Myc in HL-60 cells significantly eliminated prostratin-mediated cellular differentiation and cell cycle arrest, indicating an essential role for c-Myc suppression in the differentiation-inducing effects of prostratin. Finally, prostratin was able to potentiate cellular differentiation induced by chemotherapeutic agents such as Ara-C. Together, we proposed that prostratin alone or administered with other anticancer agents may be effective in differentiation therapy of AML.


Asunto(s)
Antineoplásicos/farmacología , Diferenciación Celular/efectos de los fármacos , Citarabina/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Ésteres del Forbol/farmacología , Proteína Quinasa C/química , Apoptosis/efectos de los fármacos , Western Blotting , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Células Tumorales Cultivadas
20.
Sheng Li Xue Bao ; 55(3): 324-30, 2003 Jun 25.
Artículo en Zh | MEDLINE | ID: mdl-12817301

RESUMEN

To provide necessary information for further understanding of molecular mechanism of hypoxia acclimatization, the differentially expressed genes of HepG2 cells exposed to normoxia, acute hypoxia-treated cells which were exposed to 1% oxygen for 48 h, and hypoxia-acclimatized HepG2 cells which were cultured for 6 circles of alternate low oxygen (1% oxygen for 24 h) and normal oxygen (21% oxygen for 24 h), were identified respectively by combining the suppression subtractive hybridization (SSH) and cDNA microarray. Thirty-seven genes were expressed differentially in cells exposed to 1% oxygen for 48 h compared with those in cells exposed to normoxia. The expression of all these 37 genes was down-regulated, including the genes participating in cell cycle, cell response to stimulus, and cell signal transduction, and cell cytoskeleton formation, the genes associated with transcription and cell metabolism, 4 expressed sequence tags (ESTs), and 12 genes of which the functions are not known. There is a novel gene sequence, which has not been found in existing databases. There were only 6 genes differentially expressed in the hypoxia-acclimatized cells compared with cells exposed to normoxia, including two mitochondrion genes, metalloprotease-1 gene, ferritin gene, thymosin beta-4 and TPT1 genes. The expressions of mitochondrion ND4, ferritin, thymosin beta-4 and TPT1 were up-regulated, while the expressions of mitochondrion ND1 gene and metalloproease-1 gene were down-regulated. Cell tolerance to hypoxia increased after the cells were hypoxia-acclimatized. The different gene expression patterns of the acute hypoxia-treated cells and the hypoxia-acclimatized cells may be related to the increased tolerance of the cells to hypoxia.


Asunto(s)
Adaptación Fisiológica/genética , Regulación Neoplásica de la Expresión Génica , Oxígeno/metabolismo , Transcriptoma , Adaptación Fisiológica/fisiología , Hipoxia de la Célula/genética , Perfilación de la Expresión Génica , Células Hep G2 , Humanos , Hibridación de Ácido Nucleico/métodos , Proteína Tumoral Controlada Traslacionalmente 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA