Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Environ Sci Technol ; 58(13): 5987-5995, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38504492

RESUMEN

Sorption to activated carbon is a common approach to reducing environmental risks of waterborne perfluorooctanoic acid (PFOA), while effective and flexible approaches to PFOA sorption are needed. Variations in temperature or the use of electrokinetic phenomena (electroosmosis and electromigration) in the presence of external DC electric fields have been shown to alter the contaminant sorption of contaminants. Their role in PFOA sorption, however, remains unclear. Here, we investigated the joint effects of DC electric fields and the temperature on the sorption of PFOA on activated carbon. Temperature-dependent batch and column sorption experiments were performed in the presence and absence of DC fields, and the results were evaluated by using different kinetic sorption models. We found an emerging interplay of DC and temperature on PFOA sorption, which was linked via the liquid viscosity (η) of the electrolyte. For instance, the combined presence of a DC field and low temperature increased the PFOA loading up to 38% in 48 h relative to DC-free controls. We further developed a model that allowed us to predict temperature- and DC field strength-dependent electrokinetic benefits on the drivers of PFOA sorption kinetics (i.e., intraparticle diffusivity and the film mass transfer coefficient). Our insights may give rise to future DC- and temperature-driven applications for PFOA sorption, for instance, in response to fluctuating PFOA concentrations in contaminated water streams.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Temperatura , Carbón Orgánico , Adsorción , Fluorocarburos/análisis , Caprilatos , Cinética , Contaminantes Químicos del Agua/análisis
2.
Environ Res ; 253: 119167, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38762006

RESUMEN

Phthalate esters (PAEs) have become one of the most concerned emerging organic pollutants in the world, due to the toxicity to human health, and hard to remove it efficiently. In this study, the degradation performance of DBP and DEHP in the soil by water bath heating activated sodium persulfate (PS) method under different factors were studied, in which the degradation rate of DBP and DEHP were improved with the increasing of temperature, PS concentration and water/soil ratio, and higher diffusion efficiency treatments methods, due to the improved mass transfer from organic phase to aqueous media. However, the degradation rate of DEHP was much lower than that of DBP, because DEHP in the soil was more difficult to contact with SO4•- for reaction on soil surface, and the degradation rate of PAEs in soil was significantly lower than that in water. Redundancy analysis of degradation rate of DBP and DEHP in water demonstrated that the key factors that determine the degradation rate is time for DBP, and cosolvent dosage for DEHP, indicating that the solubility and diffusion rate of PAEs from soil to aqueous are predominance function. This study provides comprehensive scenes in PAEs degradation with persulfate oxidation activated by thermal in soil, reveal the difference of degradation between DBP and DEHP is structure-dependent. So that we provide fundamental understanding and theoretical operation for subsequent filed treatment of various structural emerging pollutants PAEs contaminated soil with thermal activated persulfate.


Asunto(s)
Oxidación-Reducción , Ácidos Ftálicos , Contaminantes del Suelo , Suelo , Sulfatos , Sulfatos/química , Ácidos Ftálicos/química , Contaminantes del Suelo/química , Suelo/química , Ésteres/química , Compuestos de Sodio/química , Calor
3.
Environ Monit Assess ; 196(2): 135, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200165

RESUMEN

The transfer of heat and contaminants by alternating current (AC) and the removal mechanism of polycyclic aromatic hydrocarbons (PAHs) in electrical resistance heating (ERH) need further study. The main factors affecting heat transfer and water evaporation in the ERH experiment were studied, and the desorption efficiency, temporal and spatial distribution and kinetic behavior under various conditions were analyzed. The results suggested that moisture content was a necessary condition to ensure effective heating of soil, and soil moisture content above 30% was recommended. Higher voltage intensity and/or ion concentration meant stronger input power, resulting in the rapider heating process and the shorter the boiling time. At a low desorption temperature (about 100°C), the Phe desorption mainly depended on the volatilization of surface Phe and the co-boiling of Phe-water. In ERH, the participation of AC would accelerate the diffusion of pollutants from the internal pores of soil particles and their redistribution with water phase, thus improving the Phe removed by co-boiling. It was noteworthy that AC just greatly promoted solid-liquid mass transfer, but it hardly promoted desorption directly, and the removal still depended on Phe-water co-boiling. The Phe desorption efficiency could be significantly improved from 14.0~18.4% to 59.6~70.8% under the combined action of current strengthening Phe diffusion and co-boiling. Thermogravimetric and product analysis confirmed that no new organic matter was generated, but only Phe entered the gas phase through phase change.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Impedancia Eléctrica , Calefacción , Calor , Monitoreo del Ambiente , Suelo , Agua
4.
J Environ Sci (China) ; 146: 264-271, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38969454

RESUMEN

Slow release of emerging contaminants limits their accessibility from soil to pore water, constraining the treatment efficiency of physio-chemical treatment sites. DC fields mobilize organic contaminants and influence their interactions with geo-matrices such as zeolites. Poor knowledge, however, exists on the joint application of heating and electrokinetic approaches on perfluorooctanoic acid (PFOA) transport in porous media. Here, we investigated electrokinetic PFOA transport in zeolite-filled percolation columns at varying temperatures. Variations of pseudo-second-order kinetic constants (kPSO) were correlated to the liquid viscosity variations (η) and elctroosmotic flow velocities (vEOF). Applying DC fields and elevated temperature significantly (>37%) decreased PFOA sorption to zeolite. A good correlation between η, vEOF, and kPSO was found and used to develop an approach interlinking the three parameters to predict the joint effects of DC fields and temperature on PFOA sorption kinetics. These findings may give rise to future applications for better tailoring PFOA transport in environmental biotechnology.


Asunto(s)
Caprilatos , Fluorocarburos , Zeolitas , Caprilatos/química , Fluorocarburos/química , Adsorción , Zeolitas/química , Cinética , Modelos Químicos
5.
Molecules ; 27(22)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36432176

RESUMEN

The extensive use of sulfonamides seriously threatens the safety and stability of the ecological environment. Developing green inexpensive and effective adsorbents is critically needed for the elimination of sulfonamides from wastewater. The non-modified biochar exhibited limited adsorption capacity for sulfonamides. In this study, the attapulgite-doped biochar adsorbent (ATP/BC) was produced from attapulgite and rice straw by calcination. Compared with non-modified biochar, the specific surface area of ATP/BC increased by 73.53−131.26%, and the average pore width of ATP/BC decreased 1.77−3.60 nm. The removal rates of sulfadiazine and sulfamethazine by ATP/BC were 98.63% and 98.24%, respectively, at the mass ratio of ATP to rice straw = 1:10, time = 4 h, dosage = 2 g∙L−1, pH = 5, initial concentration = 1 mg∙L−1, and temperature = 20 °C. A pseudo-second-order kinetic model (R2 = 0.99) and the Freundlich isothermal model (R2 = 0.99) well described the process of sulfonamide adsorption on ATP/BC. Thermodynamic calculations showed that the adsorption behavior of sulfonamides on the ATP/BC was an endothermic (ΔH > 0), random (ΔS > 0), spontaneous reaction (ΔG < 0) that was dominated by chemisorption (−20 kJ∙mol−1 > ΔG). The potential adsorption mechanisms include electrostatic interaction, hydrogen bonding, π−π interaction, and Lewis acid−base interactions. This study provides an optional material to treat sulfonamides in wastewater and groundwater.


Asunto(s)
Oryza , Contaminantes Químicos del Agua , Adsorción , Sulfonamidas , Aguas Residuales , Contaminantes Químicos del Agua/análisis , Sulfanilamida , Adenosina Trifosfato
6.
Environ Sci Technol ; 54(21): 14036-14045, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-32969650

RESUMEN

Bacterial deposition is the first step in the formation of microbial biofilms in environmental technology, and there is high interest in controlling such deposition. Earlier work indicated that direct current (DC) electric fields could influence bacterial deposition in percolation columns. Here, a time-resolved quartz crystal microbalance with dissipation monitoring (QCM-D) and microscopy-based cell counting were used to quantify DC field effects on the deposition of bacterial strains Pseudomonas putida KT2440 and Pseudomonas fluorescens LP6a at varying electrolyte concentrations and weak electric field strengths (0-2 V cm-1). DC-induced frequency shifts (Δf), dissipation energy (ΔD), and ratios thereof (Δf/ΔD) proved as good indicators of the rigidity of cell attachment. We interpreted QCM-D signals using a theoretical approach by calculating the attractive DLVO-force and the shear and drag forces acting on a bacterium near collector surfaces in a DC electric field. We found that changes in DC-induced deposition of bacteria depended on the relative strengths of electrophoretic drag and electro-osmotic shear forces. This could enable the prediction and electrokinetic control of microbial deposition on surfaces in natural and manmade ecosystems.


Asunto(s)
Ecosistema , Tecnicas de Microbalanza del Cristal de Cuarzo , Bacterias , Electricidad , Electroforesis , Cuarzo
7.
Environ Sci Technol ; 52(24): 14294-14301, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30418019

RESUMEN

Bacterial deposition and transport are key to microbial ecology and biotechnological applications. We therefore tested whether electrokinetic forces (electroosmotic shear force ( FEOF), electrophoretic drag force ( FEP)) acting on bacteria may be used to control bacterial deposition during transport in laboratory percolation columns exposed to external direct current (DC) electric fields. For different bacteria, yet similar experimental conditions we observed that DC fields either enhanced or reduced bacterial deposition efficiencies (α) relative to DC-free controls. By calculating the DLVO force of colloidal interactions, FEOF, FEP, and the hydraulic shear forces acting on single cells at a collector surface we found that DC-induced changes of α correlated to | FEOF| to | FEP| ratios: If | FEOF| > | FEP|, α was clearly increased and if | FEOF| < | FEP| α was clearly decreased. Our findings allow for better prediction of the forces acting on a bacterium at collector surface and, hence, the electrokinetic control of microbial deposition in natural and manmade ecosystems.


Asunto(s)
Ecosistema , Electricidad , Bacterias , Electroforesis , Porosidad
8.
J Hazard Mater ; 477: 135317, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39059298

RESUMEN

The presence and distribution of toxic organic compounds in soil pose significant challenges. Whether their distributional characteristics are more complex, especially in arid and semi-arid regions with harsh climatic conditions? This study analyzed the composition, classification, spatial distribution, and sources of 123 toxic organic compounds in 56 soil samples of coal-electricity production base. Those compounds were classified into 11 categories, mainly pesticides (41 compounds), organic synthesis intermediates (31 compounds), and drugs (23 compounds). Seventeen of those compounds were detected over the rate of 30 %, with 13 of them being under the Toxic Substances Control Act (TSCA) inventory. The primary sources of toxic organic compounds were determined using Principal Component Analysis (PCA) and Positive Matrix Factorization (PMF), including the degradation of pesticide residues (22.03 %), emissions of plastic pellets (16.64 %), industrial waste emissions (12.80 %), emissions from livestock (12.74 %), plastic films (11.22 %) and coal-to-liquid projects (10.78 %). This research underscores the widespread presence of toxic organic compounds in soil, highlighting their origins and distribution patterns, which are essential for developing targeted environmental management strategies in arid and semi-arid regions.

9.
Sci Total Environ ; 947: 174713, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38997020

RESUMEN

The potential risk of heavy metals (HMs) to public health is an issue of great concern. Early prediction is an effective means to reduce the accumulation of HMs. The current prediction methods rarely take internal correlations between environmental factors into consideration, which negatively affects the accuracy of the prediction model and the interpretability of intrinsic mechanisms. Graph representation learning (GraRL) can simultaneously learn the attribute relationships between environmental factors and graph structural information. Herein, we developed the GraRL-HM method to predict the HM concentrations in soil-rice systems. The method consists of two modules, which are PeTPG and GCN-HM. In PeTPG, a graphic structure was generated using graph representation and communitization technology to explore the correlations and transmission paths of different environmental factors. Subsequently, the GCN-HM model based on the graph convolutional neural network (GCN) was used to predict the HM concentrations. The GraRL-HM method was validated by 2295 sets of data covering 21 environmental factors. The results indicated that the PeTPG model simplified correlation paths between factor nodes from 396 to 184, reducing by 53.5 % graph scale by eliminating the invalid paths. The concise and efficient graph structure enhanced the learning efficiency and representation accuracy of downstream prediction models. The GCN-HM model was superior to the four benchmark models in predicting the HM concentration in the crop, improving R2 by 36.1 %. This study develops a novel approach to improve the prediction accuracy of pollutant accumulation and provides valuable insights into intelligent regulation and planting guidance for heavy metal pollution control.


Asunto(s)
Monitoreo del Ambiente , Metales Pesados , Redes Neurales de la Computación , Contaminantes del Suelo , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos , Aprendizaje Automático , Oryza
10.
J Hazard Mater ; 452: 131187, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36996542

RESUMEN

Electrokinetic (EK) delivery followed by thermal activated peroxydisulfate (PS) has turned out to be a potential in situ chemical oxidation technology for soil remediation, but the activation behavior of PS in an electrical coupled thermal environment and the effect of direct current (DC) intervention on PS in heating soil has not been explored. In this paper, a DC coupled thermal activated PS (DC-heat/PS) system was constructed to degrade Phenanthrene (Phe) in soil. The results indicated that DC could force PS to migrate in soil, changing the degradation rate-limiting step in heat/PS system from PS diffusion to PS decomposition, which greatly accelerated the degradation rate. In DC/PS system, 1O2 was the only reactive species directly detected at platinum (Pt)-anode, confirming that S2O82- could not directly obtain electrons at the Pt-cathode to decompose into SO4•-. By comparing DC/PS and DC-heat/PS system, it was found that DC could significantly promote the conversion of SO4•- and •OH generated by thermal activation of PS to 1O2, which was attributed to the hydrogen evolution caused by DC that destroys the reaction balance in system. It was also the fundamental reason that DC leaded to the reduction of oxidation capacity of DC-heat/PS system. Finally, the possible degradation pathways of phenanthrene were proposed on the basis of seven detected intermediates.

11.
Sci Total Environ ; 901: 165771, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37532036

RESUMEN

Electrokinetic transport followed by electrical resistance heating activation of peroxydisulfate is a novel in situ soil remediation method. However, the strategy of electrokinetic transport coupled with electrical resistance heating and the comprehensive evaluation of restored soil need to be further explored. In this study, a lab-scale simulation device for in situ electrokinetic transport coupled with electrical resistance heating activation of peroxydisulfate was constructed to monitor the transport and transfer of peroxydisulfate, target pollutants, and process parameters, and the physicochemical properties and bacterial community of treated soil were evaluated. The results showed that adding 10 wt% peroxydisulfate to both the anode and cathode resulted in the optimized transfer rate and cumulative concentration of peroxydisulfate under electrokinetics. After 8 h, the cumulative concentration of peroxydisulfate reached 66.15- 166.29 mmol L-1, which was attributed to the migration of a large amount of S2O82- from the cathode to the soil under electromigration. Additionally, the anodic interfacial electric potential was improved, which was more conducive to electroosmotic transport of peroxydisulfate from the anode chamber. By alternating electrokinetic transport and electrical resistance heating activation of peroxydisulfate for two cycles, the phenanthrene degradation efficiency in four evenly distributed wells between electrodes reached 75.4 %, 87.6 %, 92.3 %, and 94.4 %. With slight variations in soil morphology and structure, the electrokinetic transport coupled with electrical resistance heating activation of peroxydisulfate elevated the soil fertility index. The abundance and diversity of bacterial communities in treated soil recovered to above the original soil level after 15 days. Our findings may support the application of electrokinetic transport coupled with electrical resistance heating activation of peroxydisulfate as a promising green ecological technology for the in situ remediation of organic-contaminated soil.

12.
Chemosphere ; 334: 138926, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37182712

RESUMEN

In situ soils were collected at two depths in Jinan and Hangzhou steel plants, which both have a long history of operation and polycyclic aromatic hydrocarbons (PAHs) contamination. The richness of 16 S rRNA gene and bacterial community of the soil were determined by real-time PCR and high-throughput sequencing. Soil physicochemical properties, PAHs contamination characteristics, and their interrelationships were also analyzed. In general, the PAHs contamination decreased with increasing soil depths. The physicochemical properties and PAH concentration of soil had synergistic impacts on the composition of the bacterial community. The long-term higher PAHs stress in Hangzhou contaminated soil (982 mg kg-1) increased the bacterial abundance and diversity, while that of Jinan contaminated soil (63 mg kg-1) decreased bacterial abundance and diversity. The pH value, sand content of the soil were positively correlated (P < 0.05) with the bacterial diversity including Simpson, Shannon, Observed_species and Chao1 indexes., and the other soil properties exhibited negative correlations with different strengths. The abundances of Curvibacter, Pseudomonas, Thiobacillus, Lysobacter, and Limnobacter were positively correlated with the PAHs concentration (P < 0.01). Additionally, the network structure of the PAHs-contaminated soils was more complex compared to that of uncontaminated soils, with stronger linkages and correlations between the different bacteria. These findings provide a theoretical basis for microbial remediation of PAHs-polluted soil.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Hidrocarburos Policíclicos Aromáticos/análisis , Suelo/química , Biodegradación Ambiental , Contaminantes del Suelo/análisis , Microbiología del Suelo , Bacterias/genética
13.
Sci Total Environ ; 900: 165497, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37451438

RESUMEN

Due to wastes from production of fluorinated materials and use of aqueous fire-fighting foams (AFFF), soils contaminated with perfluorooctanoic acid (PFOA) is of concern. However, current PFOA-contaminated soil disposal techniques have relatively low degradation efficiencies and are not suitable for on-site remediation. In this study, an electrical resistance heating (ERH) device and a box experimental device were used to study whether ERH induced persulfate activation (ERH/PS) could degrade PFOA in the soil. The results indicated that single ERH and single PS addition could not effectively degrade PFOA (with approximately 0.3 % and 3.9 % degradation after 9 h, respectively), while the degradation efficiency of PFOA with coupled ERH/PS could reach 87.3 % after 9 h of reaction. Moreover, effects of PS content, heating temperature, and soil organic matter on the degradation of PFOA were explored. During the ERH/PS process, PFOA was gradually transformed into short chain perfluorinated compounds and finally mineralized to fluoride ions. Finally, using a box experimental device, PS was effectively transported to the target contaminated area through electrokinetic (EK)-assisted delivery. After activating PS through ERH, the degradation rate of PFOA could reach 95.5 %. This is a novel study demonstrating the feasibility of ERH induced PS activation to degrade PFOA in soil, which provides a potential on-site strategy for remediation of PFOA-contaminated soil.

14.
Chemosphere ; 242: 125161, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31683161

RESUMEN

Interactions with solid matrices control the persistence and (bio-)degradability of hydrophobic organic chemicals (HOC). Approaches influencing the rate or extent of HOC interactions with matrices are thus longed for. When a direct current (DC) electric field is applied to a matrix immersed in an ionic solution, it invokes transport processes including electromigration, electrophoresis, and electroosmotic flow (EOF). EOF is the surface charge-induced movement of pore fluids. It has the potential to mobilize uncharged organic contaminants and, hence, to influence their interactions with sorbing geo-matrices (i.e. geo-sorbents). Here, we assessed the effects of weak DC electric fields on sorption and desorption of phenanthrene (PHE) in various mineral and carbonaceous geo-sorbents. We found that DC fields significantly changed the rates and extent of PHE sorption and desorption as compared to DC-free controls. A distinct correlation between the Gibbs free energy change (ΔG°) and electrokinetic effects such as the EOF velocity was observed; in case of mineral sorbents EOF limited (or even inhibited) PHE sorption and increased its desorption. In strongly sorbing carbonaceous geo-sorbents, however, EOF significantly increased the rates of PHE sorption and reduced PHE desorption by > 99% for both activated charcoal and exfoliated graphite. Based on our findings, an approach linking ΔG° and EOF velocity was developed to estimate DC-induced PHE sorption and desorption benefits on mineral and carbonaceous sorbents. We conclude that such kinetic regulation gives rise to future technical applications that may allow modulating sorption processes e.g. in response to fluctuating sorbate concentrations in contaminated water streams.


Asunto(s)
Electroósmosis , Minerales/química , Modelos Químicos , Fenantrenos/química , Contaminantes Químicos del Agua/química , Adsorción , Carbón Orgánico/química , Electroquímica , Electrodos , Grafito/química , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Ríos/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA