Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Radiology ; 312(3): e240541, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39287522

RESUMEN

Background Incidental extrapulmonary findings are commonly detected on chest CT scans and can be clinically important. Purpose To integrate artificial intelligence (AI)-based segmentation for multiple structures, coronary artery calcium (CAC), and epicardial adipose tissue with automated feature extraction methods and machine learning to detect extrapulmonary abnormalities and predict all-cause mortality (ACM) in a large multicenter cohort. Materials and Methods In this post hoc analysis, baseline chest CT scans in patients enrolled in the National Lung Screening Trial (NLST) from August 2002 to September 2007 were included from 33 participating sites. Per scan, 32 structures were segmented with a multistructure model. For each structure, 15 clinically interpretable radiomic features were quantified. Four general codes describing abnormalities reported by NLST radiologists were applied to identify extrapulmonary significant incidental findings on the CT scans. Death at 2-year and 10-year follow-up and the presence of extrapulmonary significant incidental findings were predicted with ensemble AI models, and individualized structure risk scores were evaluated. Area under the receiver operating characteristic curve (AUC) analysis was used to evaluate the performance of the models for prediction of ACM and extrapulmonary significant incidental findings. The Pearson χ2 test and Kruskal-Wallis rank sum test were used for statistical analyses. Results A total of 24 401 participants (median age, 61 years [IQR, 57-65 years]; 14 468 male) were included. In 3880 of 24 401 participants (16%), 4283 extrapulmonary significant incidental findings were reported. During the 10-year follow-up, 3389 of 24 401 participants (14%) died. CAC had the highest feature importance for predicting the three study end points. The 10-year ACM model demonstrated the best AUC performance (0.72; per-year mortality of 2.6% above and 0.8% below the risk threshold), followed by 2-year ACM (0.71; per-year mortality of 1.13% above and 0.3% below the risk threshold) and prediction of extrapulmonary significant incidental findings (0.70; probability of occurrence of 25.4% above and 9.6% below the threshold). Conclusion A fully automated AI model indicated extrapulmonary structures at risk on chest CT scans and predicted ACM with explanations. ClinicalTrials.gov Identifier: NCT00047385 © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Yanagawa and Hata in this issue.


Asunto(s)
Detección Precoz del Cáncer , Hallazgos Incidentales , Neoplasias Pulmonares , Tomografía Computarizada por Rayos X , Humanos , Masculino , Femenino , Tomografía Computarizada por Rayos X/métodos , Persona de Mediana Edad , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/mortalidad , Anciano , Detección Precoz del Cáncer/métodos , Inteligencia Artificial , Radiografía Torácica/métodos , Pulmón/diagnóstico por imagen
2.
Eur J Nucl Med Mol Imaging ; 51(3): 695-706, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37924340

RESUMEN

PURPOSE: This study aimed to compare the predictive value of CT attenuation-corrected stress total perfusion deficit (AC-sTPD) and non-corrected stress TPD (NC-sTPD) for major adverse cardiac events (MACE) in obese patients undergoing cadmium zinc telluride (CZT) SPECT myocardial perfusion imaging (MPI). METHODS: The study included 4,585 patients who underwent CZT SPECT/CT MPI for clinical indications (chest pain: 56%, shortness of breath: 13%, other: 32%) at Yale New Haven Hospital (age: 64 ± 12 years, 45% female, body mass index [BMI]: 30.0 ± 6.3 kg/m2, prior coronary artery disease: 18%). The association between AC-sTPD or NC-sTPD and MACE defined as the composite end point of mortality, nonfatal myocardial infarction or late coronary revascularization (> 90 days after SPECT) was evaluated with survival analysis. RESULTS: During a median follow-up of 25 months, 453 patients (10%) experienced MACE. In patients with BMI ≥ 35 kg/m2 (n = 931), those with AC-sTPD ≥ 3% had worse MACE-free survival than those with AC-sTPD < 3% (HR: 2.23, 95% CI: 1.40 - 3.55, p = 0.002) with no difference in MACE-free survival between patients with NC-sTPD ≥ 3% and NC-sTPD < 3% (HR:1.06, 95% CI:0.67 - 1.68, p = 0.78). AC-sTPD had higher AUC than NC-sTPD for the detection of 2-year MACE in patients with BMI ≥ 35 kg/m2 (0.631 versus 0.541, p = 0.01). In the overall cohort AC-sTPD had a higher ROC area under the curve (AUC, 0.641) than NC-sTPD (0.608; P = 0.01) for detection of 2-year MACE. In patients with BMI ≥ 35 kg/m2 AC sTPD provided significant incremental prognostic value beyond NC sTPD (net reclassification index: 0.14 [95% CI: 0.20 - 0.28]). CONCLUSIONS: AC sTPD outperformed NC sTPD in predicting MACE in patients undergoing SPECT MPI with BMI ≥ 35 kg/m2. These findings highlight the superior prognostic value of AC-sTPD in this patient population and underscore the importance of CT attenuation correction.


Asunto(s)
Enfermedad de la Arteria Coronaria , Infarto del Miocardio , Imagen de Perfusión Miocárdica , Humanos , Femenino , Persona de Mediana Edad , Anciano , Masculino , Enfermedad de la Arteria Coronaria/complicaciones , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Tomografía Computarizada de Emisión de Fotón Único/métodos , Imagen de Perfusión Miocárdica/métodos , Tomografía Computarizada por Rayos X , Pronóstico , Obesidad/complicaciones , Obesidad/diagnóstico por imagen
3.
Eur J Nucl Med Mol Imaging ; 50(9): 2656-2668, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37067586

RESUMEN

PURPOSE: Patients with known coronary artery disease (CAD) comprise a heterogenous population with varied clinical and imaging characteristics. Unsupervised machine learning can identify new risk phenotypes in an unbiased fashion. We use cluster analysis to risk-stratify patients with known CAD undergoing single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). METHODS: From 37,298 patients in the REFINE SPECT registry, we identified 9221 patients with known coronary artery disease. Unsupervised machine learning was performed using clinical (23), acquisition (17), and image analysis (24) parameters from 4774 patients (internal cohort) and validated with 4447 patients (external cohort). Risk stratification for all-cause mortality was compared to stress total perfusion deficit (< 5%, 5-10%, ≥10%). RESULTS: Three clusters were identified, with patients in Cluster 3 having a higher body mass index, more diabetes mellitus and hypertension, and less likely to be male, have dyslipidemia, or undergo exercise stress imaging (p < 0.001 for all). In the external cohort, during median follow-up of 2.6 [0.14, 3.3] years, all-cause mortality occurred in 312 patients (7%). Cluster analysis provided better risk stratification for all-cause mortality (Cluster 3: hazard ratio (HR) 5.9, 95% confidence interval (CI) 4.0, 8.6, p < 0.001; Cluster 2: HR 3.3, 95% CI 2.5, 4.5, p < 0.001; Cluster 1, reference) compared to stress total perfusion deficit (≥10%: HR 1.9, 95% CI 1.5, 2.5 p < 0.001; < 5%: reference). CONCLUSIONS: Our unsupervised cluster analysis in patients with known CAD undergoing SPECT MPI identified three distinct phenotypic clusters and predicted all-cause mortality better than ischemia alone.


Asunto(s)
Enfermedad de la Arteria Coronaria , Imagen de Perfusión Miocárdica , Masculino , Femenino , Humanos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Imagen de Perfusión Miocárdica/métodos , Aprendizaje Automático no Supervisado , Tomografía Computarizada de Emisión de Fotón Único/métodos , Prueba de Esfuerzo/métodos , Pronóstico
4.
J Nucl Cardiol ; 30(2): 590-603, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36195826

RESUMEN

BACKGROUND: Machine learning (ML) has been previously applied for prognostication in patients undergoing SPECT myocardial perfusion imaging (MPI). We evaluated whether including attenuation CT coronary artery calcification (CAC) scoring improves ML prediction of major adverse cardiovascular events (MACE) in patients undergoing SPECT/CT MPI. METHODS: From the REFINE SPECT Registry 4770 patients with SPECT/CT performed at a single center were included (age: 64 ± 12 years, 45% female). ML algorithm (XGBoost) inputs were clinical risk factors, stress variables, SPECT imaging parameters, and expert-observer CAC scoring using CT attenuation correction scans performed to obtain CT attenuation maps. The ML model was trained and validated using tenfold hold-out validation. Receiver Operator Characteristics (ROC) curves were analyzed for prediction of MACE. MACE-free survival was evaluated with standard survival analyses. RESULTS: During a median follow-up of 24.1 months, 475 patients (10%) experienced MACE. Higher area under the ROC curve for MACE was observed with ML when CAC scoring was included (CAC-ML score, 0.77, 95% confidence interval [CI] 0.75-0.79) compared to ML without CAC (ML score, 0.75, 95% CI 0.73-0.77, P = .005) and when compared to CAC score alone (0.71, 95% CI 0.68-0.73, P < .001). Among clinical, imaging, and stress parameters, CAC score had highest variable importance for ML. On survival analysis patients with high CAC-ML score (> 0.091) had higher event rate when compared to patients with low CAC-ML score (hazard ratio 5.3, 95% CI 4.3-6.5, P < .001). CONCLUSION: Integration of attenuation CT CAC scoring improves the predictive value of ML risk score for MACE prediction in patients undergoing SPECT MPI.


Asunto(s)
Enfermedad de la Arteria Coronaria , Imagen de Perfusión Miocárdica , Humanos , Femenino , Persona de Mediana Edad , Anciano , Masculino , Calcio , Imagen de Perfusión Miocárdica/métodos , Tomografía Computarizada de Emisión de Fotón Único/métodos , Tomografía Computarizada por Rayos X , Aprendizaje Automático , Pronóstico
5.
Eur J Nucl Med Mol Imaging ; 49(12): 4122-4132, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35751666

RESUMEN

PURPOSE: We sought to evaluate inter-scan and inter-reader agreement of coronary calcium (CAC) scores obtained from dedicated, ECG-gated CAC scans (standard CAC scan) and ultra-low-dose, ungated computed tomography attenuation correction (CTAC) scans obtained routinely during cardiac PET/CT imaging. METHODS: From 2928 consecutive patients who underwent same-day 82Rb cardiac PET/CT and gated CAC scan in the same hybrid PET/CT scanning session, we have randomly selected 200 cases with no history of revascularization. Standard CAC scans and ungated CTAC scans were scored by two readers using quantitative clinical software. We assessed the agreement between readers and between two scan protocols in 5 CAC categories (0, 1-10, 11-100, 101-400, and > 400) using Cohen's Kappa and concordance. RESULTS: Median age of patients was 70 (inter-quartile range: 63-77), and 46% were male. The inter-scan concordance index and Cohen's Kappa for readers 1 and 2 were 0.69; 0.75 (0.69, 0.81) and 0.72; 0.8 (0.75, 0.85) respectively. The inter-reader concordance index and Cohen's Kappa (95% confidence interval [CI]) was higher for standard CAC scans: 0.9 and 0.92 (0.89, 0.96), respectively, vs. for CTAC scans: 0.83 and 0.85 (0.79, 0.9) for CTAC scans (p = 0.02 for difference in Kappa). Most discordant readings between two protocols occurred for scans with low extent of calcification (CAC score < 100). CONCLUSION: CAC can be quantitatively assessed on PET CTAC maps with good agreement with standard scans, however with limited sensitivity for small lesions. CAC scoring of CTAC can be performed routinely without modification of PET protocol and added radiation dose.


Asunto(s)
Enfermedad de la Arteria Coronaria , Tomografía Computarizada por Tomografía de Emisión de Positrones , Calcio , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Electrocardiografía , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados , Tomografía Computarizada por Rayos X/métodos
7.
medRxiv ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39072028

RESUMEN

Background: Previous studies evaluated the ability of large language models (LLMs) in medical disciplines; however, few have focused on image analysis, and none specifically on cardiovascular imaging or nuclear cardiology. Objectives: This study assesses four LLMs - GPT-4, GPT-4 Turbo, GPT-4omni (GPT-4o) (Open AI), and Gemini (Google Inc.) - in responding to questions from the 2023 American Society of Nuclear Cardiology Board Preparation Exam, reflecting the scope of the Certification Board of Nuclear Cardiology (CBNC) examination. Methods: We used 168 questions: 141 text-only and 27 image-based, categorized into four sections mirroring the CBNC exam. Each LLM was presented with the same standardized prompt and applied to each section 30 times to account for stochasticity. Performance over six weeks was assessed for all models except GPT-4o. McNemar's test compared correct response proportions. Results: GPT-4, Gemini, GPT4-Turbo, and GPT-4o correctly answered median percentiles of 56.8% (95% confidence interval 55.4% - 58.0%), 40.5% (39.9% - 42.9%), 60.7% (59.9% - 61.3%) and 63.1% (62.5 - 64.3%) of questions, respectively. GPT4o significantly outperformed other models (p=0.007 vs. GPT-4Turbo, p<0.001 vs. GPT-4 and Gemini). GPT-4o excelled on text-only questions compared to GPT-4, Gemini, and GPT-4 Turbo (p<0.001, p<0.001, and p=0.001), while Gemini performed worse on image-based questions (p<0.001 for all). Conclusion: GPT-4o demonstrated superior performance among the four LLMs, achieving scores likely within or just outside the range required to pass a test akin to the CBNC examination. Although improvements in medical image interpretation are needed, GPT-4o shows potential to support physicians in answering text-based clinical questions.

8.
JACC Adv ; 3(10): 101249, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39309658

RESUMEN

Background: Noncontrast computed tomography (CT) scans are not used for evaluating left ventricle myocardial mass (LV mass), which is typically evaluated with contrast CT or cardiovascular magnetic resonance imaging (CMR). Objectives: The purpose of the study was to assess the feasibility of LV mass estimation from standard, ECG-gated, noncontrast CT using an artificial intelligence (AI) approach and compare it with coronary CT angiography (CTA) and CMR. Methods: We enrolled consecutive patients who underwent coronary CTA, which included noncontrast CT calcium scanning and contrast CTA, and CMR. The median interval between coronary CTA and CMR was 22 days (interquartile range: 3-76). We utilized a no new UNet AI model that automatically segmented noncontrast CT structures. AI measurement of LV mass was compared to contrast CTA and CMR. Results: A total of 316 patients (age: 57.1 ± 16.7 years, 56% male) were included. The AI segmentation took on average 22 seconds per case. An excellent correlation was observed between AI and contrast CTA LV mass measures (r = 0.84, P < 0.001), with no significant differences (136.5 ± 55.3 g vs 139.6 ± 56.9 g, P = 0.133). Bland-Altman analysis showed minimal bias of 2.9. When compared to CMR, measured LV mass was higher with AI (136.5 ± 55.3 g vs 127.1 ± 53.1 g, P < 0.001). There was an excellent correlation between AI and CMR (r = 0.85, P < 0.001), with a small bias (-9.4). There were no statistical differences between the correlations of LV mass between contrast CTA and CMR or AI and CMR. Conclusions: The AI-based automated estimation of LV mass from noncontrast CT demonstrated excellent correlations and minimal biases when compared to contrast CTA and CMR.

9.
J Nucl Med ; 65(5): 768-774, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38548351

RESUMEN

Heart failure (HF) is a leading cause of morbidity and mortality in the United States and worldwide, with a high associated economic burden. This study aimed to assess whether artificial intelligence models incorporating clinical, stress test, and imaging parameters could predict hospitalization for acute HF exacerbation in patients undergoing SPECT/CT myocardial perfusion imaging. Methods: The HF risk prediction model was developed using data from 4,766 patients who underwent SPECT/CT at a single center (internal cohort). The algorithm used clinical risk factors, stress variables, SPECT imaging parameters, and fully automated deep learning-generated calcium scores from attenuation CT scans. The model was trained and validated using repeated hold-out (10-fold cross-validation). External validation was conducted on a separate cohort of 2,912 patients. During a median follow-up of 1.9 y, 297 patients (6%) in the internal cohort were admitted for HF exacerbation. Results: The final model demonstrated a higher area under the receiver-operating-characteristic curve (0.87 ± 0.03) for predicting HF admissions than did stress left ventricular ejection fraction (0.73 ± 0.05, P < 0.0001) or a model developed using only clinical parameters (0.81 ± 0.04, P < 0.0001). These findings were confirmed in the external validation cohort (area under the receiver-operating-characteristic curve: 0.80 ± 0.04 for final model, 0.70 ± 0.06 for stress left ventricular ejection fraction, 0.72 ± 0.05 for clinical model; P < 0.001 for all). Conclusion: Integrating SPECT myocardial perfusion imaging into an artificial intelligence-based risk assessment algorithm improves the prediction of HF hospitalization. The proposed method could enable early interventions to prevent HF hospitalizations, leading to improved patient care and better outcomes.


Asunto(s)
Inteligencia Artificial , Insuficiencia Cardíaca , Hospitalización , Imagen de Perfusión Miocárdica , Humanos , Femenino , Masculino , Insuficiencia Cardíaca/diagnóstico por imagen , Anciano , Persona de Mediana Edad , Enfermedad Aguda , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Progresión de la Enfermedad , Estudios de Cohortes
10.
medRxiv ; 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38260634

RESUMEN

Background: Non-contrast CT scans are not used for evaluating left ventricle myocardial mass (LV mass), which is typically evaluated with contrast CT or cardiovascular magnetic resonance imaging (MRI). We assessed the feasibility of LV mass estimation from standard, ECG-gated, non-contrast CT using an artificial intelligence (AI) approach and compare it with coronary CT angiography (CTA) and cardiac MRI. Methods: We enrolled consecutive patients who underwent coronary CTA, which included non-contrast CT calcium scanning and contrast CTA, and cardiac MRI. The median interval between coronary CTA and MRI was 22 days (IQR: 3-76). We utilized an nn-Unet AI model that automatically segmented non-contrast CT structures. AI measurement of LV mass was compared to contrast CTA and MRI. Results: A total of 316 patients (Age: 57.1±16.7, 56% male) were included. The AI segmentation took on average 22 seconds per case. An excellent correlation was observed between AI and contrast CTA LV mass measures (r=0.84, p<0.001), with no significant differences (136.5±55.3 vs. 139.6±56.9 g, p=0.133). Bland-Altman analysis showed minimal bias of 2.9. When compared to MRI, measured LV mass was higher with AI (136.5±55.3 vs. 127.1±53.1 g, p<0.001). There was an excellent correlation between AI and MRI (r=0.85, p<0.001), with a small bias (-9.4). There were no statistical differences between the correlations of LV mass between contrast CTA and MRI, or AI and MRI. Conclusions: The AI-based automated estimation of LV mass from non-contrast CT demonstrated excellent correlations and minimal biases when compared to contrast CTA and MRI.

11.
Int J Cardiovasc Imaging ; 40(1): 185-193, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37845406

RESUMEN

We investigated the prognostic utility of visually estimated coronary artery calcification (VECAC) from low dose computed tomography attenuation correction (CTAC) scans obtained during SPECT/CT myocardial perfusion imaging (MPI), and assessed how it compares to coronary artery calcifications (CAC) quantified by calcium score on CTACs (QCAC). From the REFINE SPECT Registry 4,236 patients without prior coronary stenting with SPECT/CT performed at a single center were included (age: 64 ± 12 years, 47% female). VECAC in each coronary artery (left main, left anterior descending, circumflex, and right) were scored separately as 0 (absent), 1 (mild), 2 (moderate), or 3 (severe), yielding a possible score of 0-12 for each patient (overall VECAC grade zero:0, mild:1-2, moderate: 3-5, severe: >5). CAC scoring of CTACs was performed at the REFINE SPECT core lab with dedicated software. VECAC was correlated with categorized QCAC (zero: 0, mild: 1-99, moderate: 100-399, severe: ≥400). A high degree of correlation was observed between VECAC and QCAC, with 73% of VECACs in the same category as QCAC and 98% within one category. There was substantial agreement between VECAC and QCAC (weighted kappa: 0.78 with 95% confidence interval: 0.76-0.79, p < 0.001). During a median follow-up of 25 months, 372 patients (9%) experienced major adverse cardiovascular events (MACE). In survival analysis, both VECAC and QCAC were associated with MACE. The area under the receiver operating characteristic curve for 2-year-MACE was similar for VECAC when compared to QCAC (0.694 versus 0.691, p = 0.70). In conclusion, visual assessment of CAC on low-dose CTAC scans provides good estimation of QCAC in patients undergoing SPECT/CT MPI. Visually assessed CAC has similar prognostic value for MACE in comparison to QCAC.


Asunto(s)
Calcinosis , Enfermedad de la Arteria Coronaria , Imagen de Perfusión Miocárdica , Humanos , Femenino , Persona de Mediana Edad , Anciano , Masculino , Imagen de Perfusión Miocárdica/métodos , Pronóstico , Valor Predictivo de las Pruebas , Tomografía Computarizada de Emisión de Fotón Único/métodos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos
12.
J Nucl Med ; 65(7): 1144-1150, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38724278

RESUMEN

Transthyretin cardiac amyloidosis (ATTR CA) is increasingly recognized as a cause of heart failure in older patients, with 99mTc-pyrophosphate imaging frequently used to establish the diagnosis. Visual interpretation of SPECT images is the gold standard for interpretation but is inherently subjective. Manual quantitation of SPECT myocardial 99mTc-pyrophosphate activity is time-consuming and not performed clinically. We evaluated a deep learning approach for fully automated volumetric quantitation of 99mTc-pyrophosphate using segmentation of coregistered anatomic structures from CT attenuation maps. Methods: Patients who underwent SPECT/CT 99mTc-pyrophosphate imaging for suspected ATTR CA were included. Diagnosis of ATTR CA was determined using standard criteria. Cardiac chambers and myocardium were segmented from CT attenuation maps using a foundational deep learning model and then applied to attenuation-corrected SPECT images to quantify radiotracer activity. We evaluated the diagnostic accuracy of target-to-background ratio (TBR), cardiac pyrophosphate activity (CPA), and volume of involvement (VOI) using the area under the receiver operating characteristic curve (AUC). We then evaluated associations with the composite outcome of cardiovascular death or heart failure hospitalization. Results: In total, 299 patients were included (median age, 76 y), with ATTR CA diagnosed in 83 (27.8%) patients. CPA (AUC, 0.989; 95% CI, 0.974-1.00) and VOI (AUC, 0.988; 95% CI, 0.973-1.00) had the highest prediction performance for ATTR CA. The next highest AUC was for TBR (AUC, 0.979; 95% CI, 0.964-0.995). The AUC for CPA was significantly higher than that for heart-to-contralateral ratio (AUC, 0.975; 95% CI, 0.952-0.998; P = 0.046). Twenty-three patients with ATTR CA experienced cardiovascular death or heart failure hospitalization. All methods for establishing TBR, CPA, and VOI were associated with an increased risk of events after adjustment for age, with hazard ratios ranging from 1.41 to 1.84 per SD increase. Conclusion: Deep learning segmentation of coregistered CT attenuation maps is not affected by the pattern of radiotracer uptake and allows for fully automatic quantification of hot-spot SPECT imaging such as 99mTc-pyrophosphate. This approach can be used to accurately identify patients with ATTR CA and may play a role in risk prediction.


Asunto(s)
Aprendizaje Profundo , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Pirofosfato de Tecnecio Tc 99m , Humanos , Femenino , Masculino , Anciano , Anciano de 80 o más Años , Cardiomiopatías/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador , Neuropatías Amiloides Familiares/diagnóstico por imagen , Persona de Mediana Edad , Amiloidosis/diagnóstico por imagen
13.
medRxiv ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39399046

RESUMEN

Purpose: [18F]-fluorodeoxyglucose ([18F]FDG) positron emission tomography (PET) plays a central role in diagnosing and managing cardiac sarcoidosis. We propose a fully automated pipeline for quantification of [18F]FDG PET activity using deep learning (DL) segmentation of cardiac chambers on computed tomography (CT) attenuation maps and evaluate several quantitative approaches based on this framework. Methods: We included consecutive patients undergoing [18F]FDG PET/CT for suspected cardiac sarcoidosis. DL segmented left atrium, left ventricular(LV), right atrium, right ventricle, aorta, LV myocardium, and lungs from CT attenuation scans. CT-defined anatomical regions were applied to [18F]FDG PET images automatically to target to background ratio (TBR), volume of inflammation (VOI) and cardiometabolic activity (CMA) using full sized and shrunk segmentations. Results: A total of 69 patients were included, with mean age of 56.1 ± 13.4 and cardiac sarcoidosis present in 29 (42%). CMA had the highest prediction performance (area under the receiver operating characteristic curve [AUC] 0.919, 95% confidence interval [CI] 0.858 - 0.980) followed by VOI (AUC 0.903, 95% CI 0.834 - 0.971), TBR (AUC 0.891, 95% CI 0.819 - 0.964), and maximum standardized uptake value (AUC 0.812, 95% CI 0.701 - 0.923). Abnormal CMA (≥1) had a sensitivity of 100% and specificity 65% for cardiac sarcoidosis. Lung quantification was able to identify patients with pulmonary abnormalities. Conclusion: We demonstrate that fully automated volumetric quantification of [18F]FDG PET for cardiac sarcoidosis based on CT attenuation map-derived volumetry is feasible, rapid, and has high prediction performance. This approach provides objective measurements of cardiac inflammation with consistent definition of myocardium and background region.

14.
JACC Cardiovasc Imaging ; 17(7): 780-791, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38456877

RESUMEN

BACKGROUND: Computed tomography attenuation correction (CTAC) improves perfusion quantification of hybrid myocardial perfusion imaging by correcting for attenuation artifacts. Artificial intelligence (AI) can automatically measure coronary artery calcium (CAC) from CTAC to improve risk prediction but could potentially derive additional anatomic features. OBJECTIVES: The authors evaluated AI-based derivation of cardiac anatomy from CTAC and assessed its added prognostic utility. METHODS: The authors considered consecutive patients without known coronary artery disease who underwent single-photon emission computed tomography/computed tomography (CT) myocardial perfusion imaging at 3 separate centers. Previously validated AI models were used to segment CAC and cardiac structures (left atrium, left ventricle, right atrium, right ventricular volume, and left ventricular [LV] mass) from CTAC. They evaluated associations with major adverse cardiovascular events (MACEs), which included death, myocardial infarction, unstable angina, or revascularization. RESULTS: In total, 7,613 patients were included with a median age of 64 years. During a median follow-up of 2.4 years (IQR: 1.3-3.4 years), MACEs occurred in 1,045 (13.7%) patients. Fully automated AI processing took an average of 6.2 ± 0.2 seconds for CAC and 15.8 ± 3.2 seconds for cardiac volumes and LV mass. Patients in the highest quartile of LV mass and left atrium, LV, right atrium, and right ventricular volume were at significantly increased risk of MACEs compared to patients in the lowest quartile, with HR ranging from 1.46 to 3.31. The addition of all CT-based volumes and CT-based LV mass improved the continuous net reclassification index by 23.1%. CONCLUSIONS: AI can automatically derive LV mass and cardiac chamber volumes from CT attenuation imaging, significantly improving cardiovascular risk assessment for hybrid perfusion imaging.


Asunto(s)
Inteligencia Artificial , Angiografía por Tomografía Computarizada , Enfermedad de la Arteria Coronaria , Imagen de Perfusión Miocárdica , Valor Predictivo de las Pruebas , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Calcificación Vascular , Humanos , Persona de Mediana Edad , Imagen de Perfusión Miocárdica/métodos , Femenino , Masculino , Anciano , Medición de Riesgo , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/fisiopatología , Enfermedad de la Arteria Coronaria/mortalidad , Pronóstico , Factores de Riesgo , Calcificación Vascular/diagnóstico por imagen , Calcificación Vascular/fisiopatología , Angiografía Coronaria , Circulación Coronaria , Vasos Coronarios/diagnóstico por imagen , Vasos Coronarios/fisiopatología , Factores de Tiempo , Interpretación de Imagen Radiográfica Asistida por Computador , Estudios Retrospectivos , Reproducibilidad de los Resultados
15.
Eur Heart J Cardiovasc Imaging ; 25(7): 976-985, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38376471

RESUMEN

AIMS: Vessel-specific coronary artery calcification (CAC) is additive to global CAC for prognostic assessment. We assessed accuracy and prognostic implications of vessel-specific automated deep learning (DL) CAC analysis on electrocardiogram (ECG) gated and attenuation correction (AC) computed tomography (CT) in a large multi-centre registry. METHODS AND RESULTS: Vessel-specific CAC was assessed in the left main/left anterior descending (LM/LAD), left circumflex (LCX), and right coronary artery (RCA) using a DL model trained on 3000 gated CT and tested on 2094 gated CT and 5969 non-gated AC CT. Vessel-specific agreement was assessed with linear weighted Cohen's Kappa for CAC zero, 1-100, 101-400, and >400 Agatston units (AU). Risk of major adverse cardiovascular events (MACE) was assessed during 2.4 ± 1.4 years follow-up, with hazard ratios (HR) and 95% confidence intervals (CI). There was strong to excellent agreement between DL and expert ground truth for CAC in LM/LAD, LCX and RCA on gated CT [0.90 (95% CI 0.89 to 0.92); 0.70 (0.68 to 0.73); 0.79 (0.77 to 0.81)] and AC CT [0.78 (0.77 to 0.80); 0.60 (0.58 to 0.62); 0.70 (0.68 to 0.71)]. MACE occurred in 242 (12%) undergoing gated CT and 841(14%) of undergoing AC CT. LM/LAD CAC >400 AU was associated with the highest risk of MACE on gated (HR 12.0, 95% CI 7.96, 18.0, P < 0.001) and AC CT (HR 4.21, 95% CI 3.48, 5.08, P < 0.001). CONCLUSION: Vessel-specific CAC assessment with DL can be performed accurately and rapidly on gated CT and AC CT and provides important prognostic information.


Asunto(s)
Enfermedad de la Arteria Coronaria , Aprendizaje Profundo , Sistema de Registros , Calcificación Vascular , Humanos , Femenino , Masculino , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Persona de Mediana Edad , Calcificación Vascular/diagnóstico por imagen , Anciano , Medición de Riesgo , Angiografía por Tomografía Computarizada/métodos , Pronóstico , Angiografía Coronaria/métodos
16.
NPJ Digit Med ; 7(1): 24, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310123

RESUMEN

Epicardial adipose tissue (EAT) volume and attenuation are associated with cardiovascular risk, but manual annotation is time-consuming. We evaluated whether automated deep learning-based EAT measurements from ungated computed tomography (CT) are associated with death or myocardial infarction (MI). We included 8781 patients from 4 sites without known coronary artery disease who underwent hybrid myocardial perfusion imaging. Of those, 500 patients from one site were used for model training and validation, with the remaining patients held out for testing (n = 3511 internal testing, n = 4770 external testing). We modified an existing deep learning model to first identify the cardiac silhouette, then automatically segment EAT based on attenuation thresholds. Deep learning EAT measurements were obtained in <2 s compared to 15 min for expert annotations. There was excellent agreement between EAT attenuation (Spearman correlation 0.90 internal, 0.82 external) and volume (Spearman correlation 0.90 internal, 0.91 external) by deep learning and expert segmentation in all 3 sites (Spearman correlation 0.90-0.98). During median follow-up of 2.7 years (IQR 1.6-4.9), 565 patients experienced death or MI. Elevated EAT volume and attenuation were independently associated with an increased risk of death or MI after adjustment for relevant confounders. Deep learning can automatically measure EAT volume and attenuation from low-dose, ungated CT with excellent correlation with expert annotations, but in a fraction of the time. EAT measurements offer additional prognostic insights within the context of hybrid perfusion imaging.

17.
Nat Commun ; 15(1): 2747, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553462

RESUMEN

Chest computed tomography is one of the most common diagnostic tests, with 15 million scans performed annually in the United States. Coronary calcium can be visualized on these scans, but other measures of cardiac risk such as atrial and ventricular volumes have classically required administration of contrast. Here we show that a fully automated pipeline, incorporating two artificial intelligence models, automatically quantifies coronary calcium, left atrial volume, left ventricular mass, and other cardiac chamber volumes in 29,687 patients from three cohorts. The model processes chamber volumes and coronary artery calcium with an end-to-end time of ~18 s, while failing to segment only 0.1% of cases. Coronary calcium, left atrial volume, and left ventricular mass index are independently associated with all-cause and cardiovascular mortality and significantly improve risk classification compared to identification of abnormalities by a radiologist. This automated approach can be integrated into clinical workflows to improve identification of abnormalities and risk stratification, allowing physicians to improve clinical decision-making.


Asunto(s)
Calcio , Volumen Cardíaco , Humanos , Ventrículos Cardíacos , Inteligencia Artificial , Tomografía Computarizada por Rayos X/métodos
18.
medRxiv ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38712025

RESUMEN

Background: While low-dose computed tomography scans are traditionally used for attenuation correction in hybrid myocardial perfusion imaging (MPI), they also contain additional anatomic and pathologic information not utilized in clinical assessment. We seek to uncover the full potential of these scans utilizing a holistic artificial intelligence (AI)-driven image framework for image assessment. Methods: Patients with SPECT/CT MPI from 4 REFINE SPECT registry sites were studied. A multi-structure model segmented 33 structures and quantified 15 radiomics features for each on CT attenuation correction (CTAC) scans. Coronary artery calcium and epicardial adipose tissue scores were obtained from separate deep-learning models. Normal standard quantitative MPI features were derived by clinical software. Extreme Gradient Boosting derived all-cause mortality risk scores from SPECT, CT, stress test, and clinical features utilizing a 10-fold cross-validation regimen to separate training from testing data. The performance of the models for the prediction of all-cause mortality was evaluated using area under the receiver-operating characteristic curves (AUCs). Results: Of 10,480 patients, 5,745 (54.8%) were male, and median age was 65 (interquartile range [IQR] 57-73) years. During the median follow-up of 2.9 years (1.6-4.0), 651 (6.2%) patients died. The AUC for mortality prediction of the model (combining CTAC, MPI, and clinical data) was 0.80 (95% confidence interval [0.74-0.87]), which was higher than that of an AI CTAC model (0.78 [0.71-0.85]), and AI hybrid model (0.79 [0.72-0.86]) incorporating CTAC and MPI data (p<0.001 for all). Conclusion: In patients with normal perfusion, the comprehensive model (0.76 [0.65-0.86]) had significantly better performance than the AI CTAC (0.72 [0.61-0.83]) and AI hybrid (0.73 [0.62-0.84]) models (p<0.001, for all).CTAC significantly enhances AI risk stratification with MPI SPECT/CT beyond its primary role - attenuation correction. A comprehensive multimodality approach can significantly improve mortality prediction compared to MPI information alone in patients undergoing cardiac SPECT/CT.

19.
medRxiv ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39132480

RESUMEN

Background: Computed tomography attenuation correction (CTAC) scans are routinely obtained during cardiac perfusion imaging, but currently only utilized for attenuation correction and visual calcium estimation. We aimed to develop a novel artificial intelligence (AI)-based approach to obtain volumetric measurements of chest body composition from CTAC scans and evaluate these measures for all-cause mortality (ACM) risk stratification. Methods: We applied AI-based segmentation and image-processing techniques on CTAC scans from a large international image-based registry (four sites), to define chest rib cage and multiple tissues. Volumetric measures of bone, skeletal muscle (SM), subcutaneous, intramuscular (IMAT), visceral (VAT), and epicardial (EAT) adipose tissues were quantified between automatically-identified T5 and T11 vertebrae. The independent prognostic value of volumetric attenuation, and indexed volumes were evaluated for predicting ACM, adjusting for established risk factors and 18 other body compositions measures via Cox regression models and Kaplan-Meier curves. Findings: End-to-end processing time was <2 minutes/scan with no user interaction. Of 9918 patients studied, 5451(55%) were male. During median 2.5 years follow-up, 610 (6.2%) patients died. High VAT, EAT and IMAT attenuation were associated with increased ACM risk (adjusted hazard ratio (HR) [95% confidence interval] for VAT: 2.39 [1.92, 2.96], p<0.0001; EAT: 1.55 [1.26, 1.90], p<0.0001; IMAT: 1.30 [1.06, 1.60], p=0.0124). Patients with high bone attenuation were at lower risk of death as compared to subjects with lower bone attenuation (adjusted HR 0.77 [0.62, 0.95], p=0.0159). Likewise, high SM volume index was associated with a lower risk of death (adjusted HR 0.56 [0.44, 0.71], p<0.0001). Interpretations: CTAC scans obtained routinely during cardiac perfusion imaging contain important volumetric body composition biomarkers which can be automatically measured and offer important additional prognostic value.

20.
J Nucl Med ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39362762

RESUMEN

The Registry of Fast Myocardial Perfusion Imaging with Next-Generation SPECT (REFINE SPECT) has been expanded to include more patients and CT attenuation correction imaging. We present the design and initial results from the updated registry. Methods: The updated REFINE SPECT is a multicenter, international registry with clinical data and image files. SPECT images were processed by quantitative software and CT images by deep learning software detecting coronary artery calcium (CAC). Patients were followed for major adverse cardiovascular events (MACEs) (death, myocardial infarction, unstable angina, late revascularization). Results: The registry included scans from 45,252 patients from 13 centers (55.9% male, 64.7 ± 11.8 y). Correlating invasive coronary angiography was available for 3,786 (8.4%) patients. CT attenuation correction imaging was available for 13,405 patients. MACEs occurred in 6,514 (14.4%) patients during a median follow-up of 3.6 y (interquartile range, 2.5-4.8 y). Patients with a stress total perfusion deficit of 5% to less than 10% (unadjusted hazard ratio [HR], 2.42; 95% CI, 2.23-2.62) and a stress total perfusion deficit of at least 10% (unadjusted HR, 3.85; 95% CI, 3.56-4.16) were more likely to experience MACEs. Patients with a deep learning CAC score of 101-400 (unadjusted HR, 3.09; 95% CI, 2.57-3.72) and a CAC of more than 400 (unadjusted HR, 5.17; 95% CI, 4.41-6.05) were at increased risk of MACEs. Conclusion: The REFINE SPECT registry contains a comprehensive set of imaging and clinical variables. It will aid in understanding the value of SPECT myocardial perfusion imaging, leverage hybrid imaging, and facilitate validation of new artificial intelligence tools for improving prediction of adverse outcomes incorporating multimodality imaging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA