Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Biol Chem ; 287(41): 34801-8, 2012 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-22896697

RESUMEN

Multiple studies have indicated that the TET oxidases and, more controversially, the activation-induced cytidine deaminase/APOBEC deaminases have the capacity to convert genomic DNA 5-methylcytosine (MeC) into altered nucleobases that provoke excision repair and culminate in the replacement of the original MeC with a normal cytosine (C). We show that human APOBEC3A (A3A) efficiently deaminates both MeC to thymine (T) and normal C to uracil (U) in single-stranded DNA substrates. In comparison, the related enzyme APOBEC3G (A3G) has undetectable MeC to T activity and 10-fold less C to U activity. Upon 100-fold induction of endogenous A3A by interferon, the MeC status of bulk chromosomal DNA is unaltered, whereas both MeC and C nucleobases in transfected plasmid DNA substrates are highly susceptible to editing. Knockdown experiments show that endogenous A3A is the source of both of these cellular DNA deaminase activities. This is the first evidence for nonchromosomal DNA MeC to T editing in human cells. These biochemical and cellular data combine to suggest a model in which the expanded substrate versatility of A3A may be an evolutionary adaptation that occurred to fortify its innate immune function in foreign DNA clearance by myeloid lineage cell types.


Asunto(s)
5-Metilcitosina/metabolismo , Citidina Desaminasa/metabolismo , ADN/metabolismo , Inmunidad Innata , Proteínas/metabolismo , 5-Metilcitosina/inmunología , Citidina Desaminasa/inmunología , ADN/inmunología , Desaminación , Inducción Enzimática/efectos de los fármacos , Inducción Enzimática/inmunología , Células HEK293 , Humanos , Interferones/inmunología , Interferones/farmacología , Plásmidos/inmunología , Plásmidos/farmacología , Proteínas/inmunología , Timina/inmunología , Timina/metabolismo , Uracilo/inmunología , Uracilo/metabolismo
2.
Nat Commun ; 8: 15024, 2017 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-28452355

RESUMEN

Nucleic acid editing enzymes are essential components of the immune system that lethally mutate viral pathogens and somatically mutate immunoglobulins, and contribute to the diversification and lethality of cancers. Among these enzymes are the seven human APOBEC3 deoxycytidine deaminases, each with unique target sequence specificity and subcellular localization. While the enzymology and biological consequences have been extensively studied, the mechanism by which APOBEC3s recognize and edit DNA remains elusive. Here we present the crystal structure of a complex of a cytidine deaminase with ssDNA bound in the active site at 2.2 Å. This structure not only visualizes the active site poised for catalysis of APOBEC3A, but pinpoints the residues that confer specificity towards CC/TC motifs. The APOBEC3A-ssDNA complex defines the 5'-3' directionality and subtle conformational changes that clench the ssDNA within the binding groove, revealing the architecture and mechanism of ssDNA recognition that is likely conserved among all polynucleotide deaminases, thereby opening the door for the design of mechanistic-based therapeutics.


Asunto(s)
Dominio Catalítico , Citidina Desaminasa/química , Citidina/química , ADN de Cadena Simple/química , Proteínas/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Citidina/metabolismo , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Desaminación , Humanos , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Proteínas/genética , Proteínas/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
3.
FEBS J ; 283(1): 112-29, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26460502

RESUMEN

The cellular cytidine deaminase APOBEC3G (A3G) was first described as an anti-HIV-1 restriction factor, acting by directly deaminating reverse transcripts of the viral genome. HIV-1 Vif neutralizes the activity of A3G, primarily by mediating degradation of A3G to establish effective infection in host target cells. Lymphoma cells, which express high amounts of A3G, can restrict Vif-deficient HIV-1. Interestingly, these cells are more stable in the face of treatments that result in double-stranded DNA damage, such as ionizing radiation and chemotherapies. Previously, we showed that the Vif-derived peptide (Vif25-39) efficiently inhibits A3G deamination, and increases the sensitivity of lymphoma cells to ionizing radiation. In the current study, we show that additional peptides derived from Vif, A3G, and APOBEC3F, which contain the LYYF motif, inhibit deamination activity. Each residue in the Vif25-39 sequence moderately contributes to the inhibitory effect, whereas replacing a single residue in the LYYF motif completely abrogates inhibition of deamination. Treatment of A3G-expressing lymphoma cells exposed to ionizing radiation with the new inhibitory peptides reduces double-strand break repair after irradiation. Incubation of cultured irradiated lymphoma cells with peptides that inhibit double-strand break repair halts their propagation. These results suggest that A3G may be a potential therapeutic target that is amenable to peptide and peptidomimetic inhibition.


Asunto(s)
Citidina Desaminasa/antagonistas & inhibidores , Reparación del ADN/efectos de los fármacos , ADN/efectos de los fármacos , Péptidos/farmacología , Desaminasa APOBEC-3G , Biocatálisis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Citidina Desaminasa/metabolismo , ADN/metabolismo , Humanos , Cinética
4.
Nat Struct Mol Biol ; 22(6): 485-91, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25984970

RESUMEN

The human APOBEC3G (A3G) DNA cytosine deaminase restricts and hypermutates DNA-based parasites including HIV-1. The viral infectivity factor (Vif) prevents restriction by triggering A3G degradation. Although the structure of the A3G catalytic domain is known, the structure of the N-terminal Vif-binding domain has proven more elusive. Here, we used evolution- and structure-guided mutagenesis to solubilize the Vif-binding domain of A3G, thus permitting structural determination by NMR spectroscopy. A smaller zinc-coordinating pocket and altered helical packing distinguish the structure from previous catalytic-domain structures and help to explain the reported inactivity of this domain. This soluble A3G N-terminal domain is bound by Vif; this enabled mutagenesis and biochemical experiments, which identified a unique Vif-interacting surface formed by the α1-ß1, ß2-α2 and ß4-α4 loops. This structure sheds new light on the Vif-A3G interaction and provides critical information for future drug development.


Asunto(s)
Citidina Desaminasa/química , Citidina Desaminasa/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Desaminasa APOBEC-3G , Citidina Desaminasa/genética , Análisis Mutacional de ADN , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas
5.
Structure ; 23(5): 903-911, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25914058

RESUMEN

Deaminase activity mediated by the human APOBEC3 family of proteins contributes to genomic instability and cancer. APOBEC3A is by far the most active in this family and can cause rapid cell death when overexpressed, but in general how the activity of APOBEC3s is regulated on a molecular level is unclear. In this study, the biochemical and structural basis of APOBEC3A substrate binding and specificity is elucidated. We find that specific binding of single-stranded DNA is regulated by the cooperative dimerization of APOBEC3A. The crystal structure elucidates this homodimer as a symmetric domain swap of the N-terminal residues. This dimer interface provides insights into how cooperative protein-protein interactions may affect function in the APOBEC3 enzymes and provides a potential scaffold for strategies aimed at reducing their mutation load.


Asunto(s)
Citidina Desaminasa/química , Citidina Desaminasa/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas/química , Proteínas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Citidina Desaminasa/genética , Dimerización , Humanos , Modelos Moleculares , Mutación , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas/genética , Especificidad por Sustrato , Zinc/metabolismo
6.
Virology ; 471-473: 105-16, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25461536

RESUMEN

APOBEC3s (A3) are Zn(2+) dependent cytidine deaminases with diverse biological functions and implications for cancer and immunity. Four of the seven human A3s restrict HIV by 'hypermutating' the reverse-transcribed viral genomic DNA. HIV Virion Infectivity Factor (Vif) counters this restriction by targeting A3s to proteasomal degradation. However, there is no apparent correlation between catalytic activity, Vif binding, and sequence similarity between A3 domains. Our comparative structural analysis reveals features required for binding Vif and features influencing polynucleotide deaminase activity in A3 proteins. All Vif-binding A3s share a negatively charged surface region that includes residues previously implicated in binding the highly-positively charged Vif. Additionally, catalytically active A3s share a positively charged groove near the Zn(2+) coordinating active site, which may accommodate the negatively charged polynucleotide substrate. Our findings suggest surface electrostatics, as well as the spatial extent of substrate accommodating region, are critical determinants of substrate and Vif binding across A3 proteins with implications for anti-retroviral and anti-cancer therapeutic design.


Asunto(s)
Citosina Desaminasa/química , Citosina Desaminasa/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/química , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Desaminasas APOBEC , Secuencia de Aminoácidos , Citidina Desaminasa , Regulación de la Expresión Génica , Humanos , Potenciales de la Membrana , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia , Electricidad Estática
7.
Elife ; 32014 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-24935936

RESUMEN

Gene expression and metabolism are coupled at numerous levels. Cells must sense and respond to nutrients in their environment, and specialized cells must synthesize metabolic products required for their function. Pluripotent stem cells have the ability to differentiate into a wide variety of specialized cells. How metabolic state contributes to stem cell differentiation is not understood. In this study, we show that RNA-binding by the stem cell translation regulator Musashi-1 (MSI1) is allosterically inhibited by 18-22 carbon ω-9 monounsaturated fatty acids. The fatty acid binds to the N-terminal RNA Recognition Motif (RRM) and induces a conformational change that prevents RNA association. Musashi proteins are critical for development of the brain, blood, and epithelium. We identify stearoyl-CoA desaturase-1 as a MSI1 target, revealing a feedback loop between ω-9 fatty acid biosynthesis and MSI1 activity. We propose that other RRM proteins could act as metabolite sensors to couple gene expression changes to physiological state.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Ácido Oléico/química , Proteínas de Unión al ARN/metabolismo , Células Madre/citología , Sitio Alostérico , Secuencias de Aminoácidos , Animales , Diferenciación Celular , Línea Celular Tumoral , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ratones , Simulación de Dinámica Molecular , Células Madre Pluripotentes/citología , Estructura Terciaria de Proteína , Proteínas Recombinantes/metabolismo , Estearoil-CoA Desaturasa/metabolismo , Relación Estructura-Actividad
8.
Structure ; 21(6): 1042-50, 2013 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-23685212

RESUMEN

Human APOBEC3F is an antiretroviral single-strand DNA cytosine deaminase, susceptible to degradation by the HIV-1 protein Vif. In this study the crystal structure of the HIV Vif binding, catalytically active, C-terminal domain of APOBEC3F (A3F-CTD) was determined. The A3F-CTD shares structural motifs with portions of APOBEC3G-CTD, APOBEC3C, and APOBEC2. Residues identified to be critical for Vif-dependent degradation of APOBEC3F all fit within a predominantly negatively charged contiguous region on the surface of A3F-CTD. Specific sequence motifs, previously shown to play a role in Vif susceptibility and virion encapsidation, are conserved across APOBEC3s and between APOBEC3s and HIV-1 Vif. In this structure these motifs pack against each other at intermolecular interfaces, providing potential insights both into APOBEC3 oligomerization and Vif interactions.


Asunto(s)
Citosina Desaminasa/metabolismo , VIH-1/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Catálisis , Cristalografía por Rayos X , Citosina Desaminasa/química , Modelos Moleculares , Conformación Proteica
9.
ACS Chem Biol ; 7(3): 506-17, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22181350

RESUMEN

APOBEC3G is a single-stranded DNA cytosine deaminase that comprises part of the innate immune response to viruses and transposons. Although APOBEC3G is the prototype for understanding the larger mammalian polynucleotide deaminase family, no specific chemical inhibitors exist to modulate its activity. High-throughput screening identified 34 compounds that inhibit APOBEC3G catalytic activity. Twenty of 34 small molecules contained catechol moieties, which are known to be sulfhydryl reactive following oxidation to the orthoquinone. Located proximal to the active site, C321 was identified as the binding site for the inhibitors by a combination of mutational screening, structural analysis, and mass spectrometry. Bulkier substitutions C321-to-L, F, Y, or W mimicked chemical inhibition. A strong specificity for APOBEC3G was evident, as most compounds failed to inhibit the related APOBEC3A enzyme or the unrelated enzymes E. coli uracil DNA glycosylase, HIV-1 RNase H, or HIV-1 integrase. Partial, but not complete, sensitivity could be conferred to APOBEC3A by introducing the entire C321 loop from APOBEC3G. Thus, a structural model is presented in which the mechanism of inhibition is both specific and competitive, by binding a pocket adjacent to the APOBEC3G active site, reacting with C321, and blocking access to substrate DNA cytosines.


Asunto(s)
Citidina Desaminasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Desaminasa APOBEC-3G , Células Cultivadas , Cristalografía por Rayos X , Citidina Desaminasa/aislamiento & purificación , Citidina Desaminasa/metabolismo , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/química , Células HEK293 , Integrasa de VIH/metabolismo , Humanos , Modelos Moleculares , Estructura Molecular , Ribonucleasa H/antagonistas & inhibidores , Ribonucleasa H/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
10.
Structure ; 18(1): 28-38, 2010 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-20152150

RESUMEN

APOBEC3G is a DNA cytidine deaminase that has antiviral activity against HIV-1 and other pathogenic viruses. In this study the crystal structure of the catalytically active C-terminal domain was determined to 2.25 A. This structure corroborates features previously observed in nuclear magnetic resonance (NMR) studies, a bulge in the second beta strand and a lengthening of the second alpha helix. Oligomerization is postulated to be critical for the function of APOBEC3G. In this structure, four extensive intermolecular interfaces are observed, suggesting potential models for APOBEC3G oligomerization. The structural and functional significance of these interfaces was probed by solution NMR and disruptive variants were designed and tested for DNA deaminase and anti-HIV activities. The variant designed to disrupt the most extensive interface lost both activities. NMR solution data provides evidence that another interface, which coordinates a novel zinc site, also exists. Thus, the observed crystallographic interfaces of APOBEC3G may be important for both oligomerization and function.


Asunto(s)
Dominio Catalítico , Citidina Desaminasa/química , Desaminasa APOBEC-3G , Secuencia de Aminoácidos , Citidina Desaminasa/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Estructura Cuaternaria de Proteína , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA