RESUMEN
An integrated cell for the solar-driven splitting of water consists of multiple functional components and couples various photoelectrochemical (PEC) processes at different length and time scales. The overall solar-to-hydrogen (STH) conversion efficiency of such a system depends on the performance and materials properties of the individual components as well as on the component integration, overall device architecture, and system operating conditions. This Review focuses on the modeling- and simulation-guided development and implementation of solar-driven water-splitting prototypes from a holistic viewpoint that explores the various interplays between the components. The underlying physics and interactions at the cell level is are reviewed and discussed, followed by an overview of the use of the cell model to provide target properties of materials and guide the design of a range of traditional and unique device architectures.
RESUMEN
In pursuit of sustainable living, ethics researchers as well as consumers themselves have challenged the status quo of consumption as an institution. Fueled by global economic, environmental, and societal concerns, responsible consumption has become an integral part of the sustainability and consumption ethics literature. One movement toward sustainability consists of confining living space into a smaller ecological footprint. Although motivations for such a lifestyle have been examined, little research has investigated the process of how members of the tiny house movement reconfigure learned consumption practices. This study investigates tiny house dwellers' transformational experiences through the theoretical lens of contemporary institutional change. Qualitative analysis reveals that these challengers of the status quo face significant normative, regulatory, and cognitive hurdles. However, by engaging in sensemaking, validation, and change agency practices, tiny house dwellers have attempted to legitimize a new way of sustainable living that can be in conflict with existing institutions. Implications and future research are discussed in terms of how examining institutional change processes can be a vital part of ethics and sustainability research. Implications are also provided for how marketing organizations can consider modifying their market offerings to capitalize on this segment of society.
RESUMEN
Some energy services and industrial processes-such as long-distance freight transport, air travel, highly reliable electricity, and steel and cement manufacturing-are particularly difficult to provide without adding carbon dioxide (CO2) to the atmosphere. Rapidly growing demand for these services, combined with long lead times for technology development and long lifetimes of energy infrastructure, make decarbonization of these services both essential and urgent. We examine barriers and opportunities associated with these difficult-to-decarbonize services and processes, including possible technological solutions and research and development priorities. A range of existing technologies could meet future demands for these services and processes without net addition of CO2 to the atmosphere, but their use may depend on a combination of cost reductions via research and innovation, as well as coordinated deployment and integration of operations across currently discrete energy industries.
RESUMEN
Artificial photosynthesis relies on the availability of semiconductors that are chemically stable and can efficiently capture solar energy. Although metal oxide semiconductors have been investigated for their promise to resist oxidative attack, materials in this class can suffer from chemical and photochemical instability. Here we present a methodology for evaluating corrosion mechanisms and apply it to bismuth vanadate, a state-of-the-art photoanode. Analysis of changing morphology and composition under solar water splitting conditions reveals chemical instabilities that are not predicted from thermodynamic considerations of stable solid oxide phases, as represented by the Pourbaix diagram for the system. Computational modelling indicates that photoexcited charge carriers accumulated at the surface destabilize the lattice, and that self-passivation by formation of a chemically stable surface phase is kinetically hindered. Although chemical stability of metal oxides cannot be assumed, insight into corrosion mechanisms aids development of protection strategies and discovery of semiconductors with improved stability.
RESUMEN
Semiconductors with small band gaps (<2 eV) must be stabilized against corrosion or passivation in aqueous electrolytes before such materials can be used as photoelectrodes to directly produce fuels from sunlight. In addition, incorporation of electrocatalysts on the surface of photoelectrodes is required for efficient oxidation of H2O to O2(g) and reduction of H2O or H2O and CO2 to fuels. We report herein the stabilization of np(+)-Si(100) and n-Si(111) photoanodes for over 1200 h of continuous light-driven evolution of O2(g) in 1.0 M KOH(aq) by an earth-abundant, optically transparent, electrocatalytic, stable, conducting nickel oxide layer. Under simulated solar illumination and with optimized index-matching for proper antireflection, NiOx-coated np(+)-Si(100) photoanodes produced photocurrent-onset potentials of -180 ± 20 mV referenced to the equilibrium potential for evolution of O2(g), photocurrent densities of 29 ± 1.8 mA cm(-2) at the equilibrium potential for evolution of O2(g), and a solar-to-O2(g) conversion figure-of-merit of 2.1%.
RESUMEN
A fully integrated solar-driven water-splitting system comprised of WO3 /FTO/p(+) n Si as the photoanode, Pt/TiO2 /Ti/n(+) p Si as the photocathode, and Nafion as the membrane separator, was simulated, assembled, operated in 1.0 M HClO4 , and evaluated for performance and safety characteristics under dual side illumination. A multi-physics model that accounted for the performance of the photoabsorbers and electrocatalysts, ion transport in the solution electrolyte, and gaseous product crossover was first used to define the optimal geometric design space for the system. The photoelectrodes and the membrane separators were then interconnected in a louvered design system configuration, for which the light-absorbing area and the solution-transport pathways were simultaneously optimized. The performance of the photocathode and the photoanode were separately evaluated in a traditional three-electrode photoelectrochemical cell configuration. The photocathode and photoanode were then assembled back-to-back in a tandem configuration to provide sufficient photovoltage to sustain solar-driven unassisted water-splitting. The current-voltage characteristics of the photoelectrodes showed that the low photocurrent density of the photoanode limited the overall solar-to-hydrogen (STH) conversion efficiency due to the large band gap of WO3 . A hydrogen-production rate of 0.17â mL hr(-1) and a STH conversion efficiency of 0.24 % was observed in a full cell configuration for >20â h with minimal product crossover in the fully operational, intrinsically safe, solar-driven water-splitting system. The solar-to-hydrogen conversion efficiency, ηSTH , calculated using the multiphysics numerical simulation was in excellent agreement with the experimental behavior of the system. The value of ηSTH was entirely limited by the performance of the photoelectrochemical assemblies employed in this study. The louvered design provides a robust platform for implementation of various types of photoelectrochemical assemblies, and can provide an approach to significantly higher solar conversion efficiencies as new and improved materials become available.
Asunto(s)
Modelos Químicos , Procesos Fotoquímicos , Energía Solar , Agua/química , Electroquímica , Hidrógeno/química , Concentración de Iones de Hidrógeno , Reproducibilidad de los ResultadosRESUMEN
Although semiconductors such as silicon (Si), gallium arsenide (GaAs), and gallium phosphide (GaP) have band gaps that make them efficient photoanodes for solar fuel production, these materials are unstable in aqueous media. We show that TiO2 coatings (4 to 143 nanometers thick) grown by atomic layer deposition prevent corrosion, have electronic defects that promote hole conduction, and are sufficiently transparent to reach the light-limited performance of protected semiconductors. In conjunction with a thin layer or islands of Ni oxide electrocatalysts, Si photoanodes exhibited continuous oxidation of 1.0 molar aqueous KOH to O2 for more than 100 hours at photocurrent densities of >30 milliamperes per square centimeter and ~100% Faradaic efficiency. TiO2-coated GaAs and GaP photoelectrodes exhibited photovoltages of 0.81 and 0.59 V and light-limiting photocurrent densities of 14.3 and 3.4 milliamperes per square centimeter, respectively, for water oxidation.