Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 185(23): 4298-4316.e21, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36323317

RESUMEN

After ingestion of toxin-contaminated food, the brain initiates a series of defensive responses (e.g., nausea, retching, and vomiting). How the brain detects ingested toxin and coordinates diverse defensive responses remains poorly understood. Here, we developed a mouse-based paradigm to study defensive responses induced by bacterial toxins. Using this paradigm, we identified a set of molecularly defined gut-to-brain and brain circuits that jointly mediate toxin-induced defensive responses. The gut-to-brain circuit consists of a subset of Htr3a+ vagal sensory neurons that transmit toxin-related signals from intestinal enterochromaffin cells to Tac1+ neurons in the dorsal vagal complex (DVC). Tac1+ DVC neurons drive retching-like behavior and conditioned flavor avoidance via divergent projections to the rostral ventral respiratory group and lateral parabrachial nucleus, respectively. Manipulating these circuits also interferes with defensive responses induced by the chemotherapeutic drug doxorubicin. These results suggest that food poisoning and chemotherapy recruit similar circuit modules to initiate defensive responses.


Asunto(s)
Eje Cerebro-Intestino , Núcleos Parabraquiales , Nervio Vago , Animales , Ratones , Neuronas/fisiología , Neuronas Aferentes/fisiología , Nervio Vago/fisiología
2.
Natl Sci Rev ; 11(1): nwad256, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38288368

RESUMEN

Nausea and vomiting are important defensive responses to cope with pathogens and toxins that invade the body. The nucleus of the solitary tract (NTS) is important for initiating these responses. However, the molecular heterogeneities and cellular diversities of the NTS occlude a better understanding of these defensive responses. Here, we constructed the single-nucleus transcriptomic atlas of NTS cells and found multiple populations of NTS neurons that may be involved in these defensive responses. Among these, we identified Calbindin1-positive (Calb1+) NTS neurons that are molecularly distinct from Tac1+ neurons. These Calb1+ neurons are critical for nausea and retching induced by cereulide; an emetic toxin secreted by Bacillus Cereus. Strikingly, we found that cereulide can directly modulate vagal sensory neurons that innervate Calb1+ NTS neurons, a novel mechanism distinct from that for nausea and retching induced by Staphylococcal enterotoxin A. Together, our transcriptomic atlas of NTS neurons and the functional analyses revealed the neural mechanism for cereulide-induced retching-like behavior. These results demonstrate the molecular and cellular complexities in the brain that underlie defensive responses to the diversities of pathogens and toxins.

3.
Nat Genet ; 56(7): 1503-1515, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38834904

RESUMEN

Unlike megabats, which rely on well-developed vision, microbats use ultrasonic echolocation to navigate and locate prey. To study ultrasound perception, here we compared the auditory cortices of microbats and megabats by constructing reference genomes and single-nucleus atlases for four species. We found that parvalbumin (PV)+ neurons exhibited evident cross-species differences and could respond to ultrasound signals, whereas their silencing severely affected ultrasound perception in the mouse auditory cortex. Moreover, megabat PV+ neurons expressed low levels of complexins (CPLX1-CPLX4), which can facilitate neurotransmitter release, while microbat PV+ neurons highly expressed CPLX1, which improves neurotransmission efficiency. Further perturbation of Cplx1 in PV+ neurons impaired ultrasound perception in the mouse auditory cortex. In addition, CPLX1 functioned in other parts of the auditory pathway in microbats but not megabats and exhibited convergent evolution between echolocating microbats and whales. Altogether, we conclude that CPLX1 expression throughout the entire auditory pathway can enhance mammalian ultrasound neurotransmission.


Asunto(s)
Corteza Auditiva , Vías Auditivas , Proteínas del Tejido Nervioso , Transmisión Sináptica , Animales , Masculino , Ratones , Corteza Auditiva/metabolismo , Vías Auditivas/metabolismo , Ecolocación , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Parvalbúminas/metabolismo , Parvalbúminas/genética
4.
Prog Neurobiol ; 227: 102477, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37270025

RESUMEN

Cognitive impairment (CI) is a common neurological disease resulting from traumatic brain injury (TBI). Trigeminal nerve stimulation (TNS) is an emerging, non-invasive, and effective neuromodulation therapy especially for patients suffering from brain function disorders. However, the treatment and recovery mechanisms of TNS remain poorly understood. By using combined advanced technologies, we revealed here that the neuroprotective potential of TNS to improve CI caused by TBI. The study results found that 40 Hz TNS treatment has the ability to improve CI in TBI mice and communicates with central nervous system via the trigeminal ganglion (TG). Transsynaptic virus experiments revealed that TG is connected to the hippocampus (HPC) through the corticotropin-releasing hormone (CRH) neurons of paraventricular hypothalamic nucleus (PVN) and the dopamine transporter (DAT) neurons of substantia nigra pars compacta/ventral tegmental area (SNc/VTA). Mechanistically, the data showed that TNS can increase the release of dopamine in the HPC by activating the following neural circuit: TG→CRH+ PVN→DAT+ SNc/VTA → HPC. Bulk RNA sequencing confirmed changes in the expression of dopamine-related genes in the HPC. This work preliminarily explains the efficacy and mechanism of TNS and adds to the increasing evidence demonstrating that nerve stimulation is an effective method to treat neurological diseases.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Dopamina , Ratones , Animales , Dopamina/metabolismo , Sustancia Negra/metabolismo , Neuronas Dopaminérgicas/metabolismo , Lesiones Traumáticas del Encéfalo/terapia , Lesiones Traumáticas del Encéfalo/metabolismo , Nervio Trigémino/metabolismo , Hipocampo/metabolismo , Cognición
5.
Neuron ; 111(20): 3270-3287.e8, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37557180

RESUMEN

The expression of defensive responses to alerting sensory cues requires both general arousal and a specific arousal state associated with defensive emotions. However, it remains unclear whether these two forms of arousal can be regulated by common brain regions. We discovered that the medial sector of the auditory thalamus (ATm) in mice is a thalamic hub controlling both general and defensive arousal. The spontaneous activity of VGluT2-expressing ATm (ATmVGluT2+) neurons was correlated with and causally contributed to wakefulness. In sleeping mice, sustained ATmVGluT2+ population responses were predictive of sensory-induced arousal, the likelihood of which was markedly decreased by inhibiting ATmVGluT2+ neurons or multiple downstream pathways. In awake mice, ATmVGluT2+ activation led to heightened arousal accompanied by excessive anxiety and avoidance behavior. Notably, blocking their neurotransmission abolished alerting stimuli-induced defensive behaviors. These findings may shed light on the comorbidity of sleep disturbances and abnormal sensory sensitivity in specific brain disorders.


Asunto(s)
Nivel de Alerta , Tálamo , Ratones , Animales , Nivel de Alerta/fisiología , Tálamo/fisiología , Vigilia/fisiología , Neuronas/fisiología , Transmisión Sináptica
6.
Neuron ; 110(5): 874-890.e7, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-34932943

RESUMEN

Self-grooming is a complex behavior with important biological functions and pathological relevance. How the brain coordinates with the spinal cord to generate the repetitive movements of self-grooming remains largely unknown. Here, we report that in the caudal part of the spinal trigeminal nucleus (Sp5C), neurons that express Cerebellin-2 (Cbln2+) form a neural circuit to the cervical spinal cord to maintain repetitive orofacial self-grooming. Inactivation of Cbln2+ Sp5C neurons blocked both sensory-evoked and stress-induced repetitive orofacial self-grooming. Activation of these neurons triggered short-latency repetitive forelimb movements that resembled orofacial self-grooming. The Cbln2+ Sp5C neurons were monosynaptically innervated by both somatosensory neurons in the trigeminal ganglion and paraventricular hypothalamic neurons. Among the divergent projections of Cbln2+ Sp5C neurons, a descending pathway that innervated motor neurons and interneurons in the cervical spinal cord was necessary and sufficient for repetitive orofacial self-grooming. These data reveal a brain-to-spinal sensorimotor loop for repetitive self-grooming in mice.


Asunto(s)
Encéfalo , Neuronas , Animales , Aseo Animal , Hipotálamo , Ratones , Neuronas/fisiología , Médula Espinal
7.
Nat Neurosci ; 25(1): 72-85, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34980925

RESUMEN

Innate defensive behaviors triggered by environmental threats are important for animal survival. Among these behaviors, defensive attack toward threatening stimuli (for example, predators) is often the last line of defense. How the brain regulates defensive attack remains poorly understood. Here we show that noxious mechanical force in an inescapable context is a key stimulus for triggering defensive attack in laboratory mice. Mechanically evoked defensive attacks were abrogated by photoinhibition of vGAT+ neurons in the anterior hypothalamic nucleus (AHN). The vGAT+ AHN neurons encoded the intensity of mechanical force and were innervated by brain areas relevant to pain and attack. Activation of these neurons triggered biting attacks toward a predator while suppressing ongoing behaviors. The projection from vGAT+ AHN neurons to the periaqueductal gray might be one AHN pathway participating in mechanically evoked defensive attack. Together, these data reveal that vGAT+ AHN neurons encode noxious mechanical stimuli and regulate defensive attack in mice.


Asunto(s)
Núcleo Hipotalámico Anterior , Neuronas GABAérgicas , Animales , Neuronas GABAérgicas/fisiología , Ratones , Sustancia Gris Periacueductal/fisiología
8.
Nat Commun ; 12(1): 4409, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34285209

RESUMEN

Appetitive locomotion is essential for animals to approach rewards, such as food and prey. The neuronal circuitry controlling appetitive locomotion is unclear. In a goal-directed behavior-predatory hunting, we show an excitatory brain circuit from the superior colliculus (SC) to the substantia nigra pars compacta (SNc) to enhance appetitive locomotion in mice. This tectonigral pathway transmits locomotion-speed signals to dopamine neurons and triggers dopamine release in the dorsal striatum. Synaptic inactivation of this pathway impairs appetitive locomotion but not defensive locomotion. Conversely, activation of this pathway increases the speed and frequency of approach during predatory hunting, an effect that depends on the activities of SNc dopamine neurons. Together, these data reveal that the SC regulates locomotion-speed signals to SNc dopamine neurons to enhance appetitive locomotion in mice.


Asunto(s)
Conducta Apetitiva/fisiología , Locomoción/fisiología , Porción Compacta de la Sustancia Negra/fisiología , Conducta Predatoria/fisiología , Colículos Superiores/fisiología , Animales , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Masculino , Ratones , Ratones Transgénicos , Modelos Animales , Vías Nerviosas/fisiología , Porción Compacta de la Sustancia Negra/citología , Técnicas Estereotáxicas , Colículos Superiores/citología , Transmisión Sináptica/fisiología
9.
Elife ; 102021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34318750

RESUMEN

Sensorimotor transformation, a process that converts sensory stimuli into motor actions, is critical for the brain to initiate behaviors. Although the circuitry involved in sensorimotor transformation has been well delineated, the molecular logic behind this process remains poorly understood. Here, we performed high-throughput and circuit-specific single-cell transcriptomic analyses of neurons in the superior colliculus (SC), a midbrain structure implicated in early sensorimotor transformation. We found that SC neurons in distinct laminae expressed discrete marker genes. Of particular interest, Cbln2 and Pitx2 were key markers that define glutamatergic projection neurons in the optic nerve (Op) and intermediate gray (InG) layers, respectively. The Cbln2+ neurons responded to visual stimuli mimicking cruising predators, while the Pitx2+ neurons encoded prey-derived vibrissal tactile cues. By forming distinct input and output connections with other brain areas, these neuronal subtypes independently mediated behaviors of predator avoidance and prey capture. Our results reveal that, in the midbrain, sensorimotor transformation for different behaviors may be performed by separate circuit modules that are molecularly defined by distinct transcriptomic codes.


Asunto(s)
Perfilación de la Expresión Génica , Mesencéfalo/metabolismo , Corteza Sensoriomotora/fisiología , Transcriptoma , Animales , Masculino , Mesencéfalo/citología , Ratones , Neuronas/fisiología , Análisis de la Célula Individual , Colículos Superiores
10.
Nat Neurosci ; 22(6): 909-920, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31127260

RESUMEN

Predatory hunting plays a fundamental role in animal survival. Little is known about the neural circuits that convert sensory cues into neural signals to drive this behavior. Here we identified an excitatory subcortical neural circuit from the superior colliculus to the zona incerta that triggers predatory hunting. The superior colliculus neurons that form this pathway integrate motion-related visual and vibrissal somatosensory cues of prey. During hunting, these neurons send out neural signals that are temporally correlated with predatory attacks, but not with feeding after prey capture. Synaptic inactivation of this pathway selectively blocks hunting for prey without impairing other sensory-triggered behaviors. These data reveal a subcortical neural circuit that is specifically engaged in translating sensory cues into neural signals to provoke predatory hunting.


Asunto(s)
Vías Nerviosas/fisiología , Conducta Predatoria/fisiología , Colículos Superiores/fisiología , Zona Incerta/fisiología , Animales , Ratones , Vías Nerviosas/anatomía & histología , Neuronas/citología , Neuronas/fisiología , Colículos Superiores/anatomía & histología , Zona Incerta/anatomía & histología
11.
Nat Neurosci ; 22(6): 921-932, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31127258

RESUMEN

The neural substrates for predatory hunting, an evolutionarily conserved appetitive behavior, remain largely undefined. Photoactivation of zona incerta (ZI) GABAergic neurons strongly promotes hunting of both live and artificial prey. Conversely, photoinhibition of these neurons or deletion of their GABA function severely impairs hunting. Here electrophysiological recordings reveal that ZI neurons integrate prey-related multisensory signals and discriminate prey from non-prey targets. Visual or whisker sensory deprivation reduces calcium responses induced by prey introduction and attack and impair hunting. ZI photoactivation largely corrects the hunting impairment caused by sensory deprivations. Motivational and reinforcing assays reveal that ZI photoactivation is associated with a strong appetitive drive, causing repetitive self-stimulatory behaviors. These ZI neurons project to the periaqueductal gray matter to induce hunting and motivation. Thus, we have delineated the function of ZI GABAergic neurons in hunting, which integrates prey-related sensory signals into prey detection and attack and induces a strong appetitive motivational drive.


Asunto(s)
Neuronas GABAérgicas/fisiología , Conducta Predatoria/fisiología , Zona Incerta/fisiología , Animales , Ratones
12.
Nat Commun ; 9(1): 1232, 2018 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-29581428

RESUMEN

Animals respond to environmental threats, e.g. looming visual stimuli, with innate defensive behaviors such as escape and freezing. The key neural circuits that participate in the generation of such dimorphic defensive behaviors remain unclear. Here we show that the dimorphic behavioral patterns triggered by looming visual stimuli are mediated by parvalbumin-positive (PV+) projection neurons in mouse superior colliculus (SC). Two distinct groups of SC PV+ neurons form divergent pathways to transmit threat-relevant visual signals to neurons in the parabigeminal nucleus (PBGN) and lateral posterior thalamic nucleus (LPTN). Activations of PV+ SC-PBGN and SC-LPTN pathways mimic the dimorphic defensive behaviors. The PBGN and LPTN neurons are co-activated by looming visual stimuli. Bilateral inactivation of either nucleus results in the defensive behavior dominated by the other nucleus. Together, these data suggest that the SC orchestrates dimorphic defensive behaviors through two separate tectofugal pathways that may have interactions.


Asunto(s)
Reacción de Fuga , Miedo/fisiología , Reacción Cataléptica de Congelación , Mesencéfalo/fisiología , Estimulación Luminosa , Colículos Superiores/fisiología , Animales , Núcleos Talámicos Laterales/citología , Núcleos Talámicos Laterales/fisiología , Masculino , Mesencéfalo/citología , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Colículos Superiores/citología , Vías Visuales
13.
Neuron ; 95(1): 106-122.e5, 2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28683263

RESUMEN

During social transmission of food preference (STFP), mice form long-term memory of food odors presented by a social partner. How does the brain associate a social context with odor signals to promote memory encoding? Here we show that odor exposure during STFP, but not unconditioned odor exposure, induces glomerulus-specific long-term potentiation (LTP) of synaptic strength selectively at the GABAergic component of dendrodendritic synapses of granule and mitral cells in the olfactory bulb. Conditional deletion of synaptotagmin-10, the Ca2+ sensor for IGF1 secretion from mitral cells, or deletion of IGF1 receptor in the olfactory bulb prevented the socially relevant GABAergic LTP and impaired memory formation after STFP. Conversely, the addition of IGF1 to acute olfactory bulb slices elicited the GABAergic LTP in mitral cells by enhancing postsynaptic GABA receptor responses. Thus, our data reveal a synaptic substrate for a socially conditioned long-term memory that operates at the level of the initial processing of sensory information.


Asunto(s)
Dendritas/fisiología , Preferencias Alimentarias/fisiología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Potenciación a Largo Plazo/genética , Receptor IGF Tipo 1/genética , Aprendizaje Social/fisiología , Sinaptotagminas/genética , Ácido gamma-Aminobutírico/metabolismo , Animales , Dendritas/metabolismo , Preferencias Alimentarias/efectos de los fármacos , Factor I del Crecimiento Similar a la Insulina/farmacología , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Memoria/efectos de los fármacos , Memoria/fisiología , Ratones , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Odorantes , Bulbo Olfatorio/citología , Bulbo Olfatorio/metabolismo , Receptor IGF Tipo 1/metabolismo , Olfato/efectos de los fármacos , Olfato/fisiología , Aprendizaje Social/efectos de los fármacos , Sinaptotagminas/metabolismo , Ácido gamma-Aminobutírico/efectos de los fármacos
14.
Science ; 348(6242): 1472-7, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-26113723

RESUMEN

The fear responses to environmental threats play a fundamental role in survival. Little is known about the neural circuits specifically processing threat-relevant sensory information in the mammalian brain. We identified parvalbumin-positive (PV(+)) excitatory projection neurons in mouse superior colliculus (SC) as a key neuronal subtype for detecting looming objects and triggering fear responses. These neurons, distributed predominantly in the superficial SC, divergently projected to different brain areas, including the parabigeminal nucleus (PBGN), an intermediate station leading to the amygdala. Activation of the PV(+) SC-PBGN pathway triggered fear responses, induced conditioned aversion, and caused depression-related behaviors. Approximately 20% of mice subjected to the fear-conditioning paradigm developed a generalized fear memory.


Asunto(s)
Miedo/fisiología , Memoria/fisiología , Neuronas/fisiología , Parvalbúminas/metabolismo , Colículos Superiores/fisiología , Vías Visuales/fisiología , Amígdala del Cerebelo/fisiología , Animales , Condicionamiento Clásico , Femenino , Masculino , Ratones , Neuronas/química , Parvalbúminas/análisis , Colículos Superiores/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA