Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Nutr ; 153(9): 2543-2551, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37495114

RESUMEN

BACKGROUND: Bioelectrical impedance analysis (BIA) is a minimally invasive, safe, easy, and quick technology used to determine body composition. OBJECTIVES: We compared the relationship among impedance indices obtained using single-frequency BIA, multi-frequency BIA, bioelectrical impedance spectroscopy (BIS), and skeletal muscle mass (SMM) of physically active young men and athletes using the creatine (methyl-d3) dilution method. We also compared the SMM and intracellular water (ICW) of athletes and active young men measured using a reference stable isotope dilution and BIS method, respectively. METHODS: We analyzed data from 28 men (mean age, 20 ± 2 y) who exercised regularly. Single-frequency BIA at 5 kHz and 50 kHz (R5 and R50), multi-frequency BIA (R250-5), and BIS (RICW) methods of determining the SMM were compared. The deuterium and sodium bromide dilution methods of obtaining the total body water, ICW, and extracellular water measurements were also used, and the results were compared to those acquired using bioimpedance methods. RESULTS: The correlation coefficients between SMM and L2/R5, L2/R50, L2/R250-5, and L2/RICW were 0.738, 0.762, 0.790, and 0.790, respectively (P < 0.01). The correlation coefficients between ICW and L2/R5, L2/R50, L2/R250-5, and L2/RICW were 0.660, 0.687, 0.758, and 0.730, respectively (P < 0.001). However, the correlation coefficients of L2/R50, L2/R250-5, and L2/RICW for SMM and ICW were not significantly different. CONCLUSIONS: Our findings suggest that single-frequency BIA at L2/R50, multi-frequency BIA, and BIS are valid for assessing the SMM of athletes and active young men. Additionally, we confirmed that the SMM and ICW were correlated with single-frequency BIA, multi-frequency BIA, and BIS. Bioimpedance technologies may be dependable and practical means for assessing SMM and hydration compartment status of active young adult males; however, cross-validation is needed.


Asunto(s)
Agua Corporal , Agua , Masculino , Adulto Joven , Humanos , Adolescente , Adulto , Impedancia Eléctrica , Composición Corporal/fisiología , Atletas , Músculo Esquelético/fisiología
2.
Pediatr Res ; 94(3): 1195-1202, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37037953

RESUMEN

BACKGROUND: Given limited experience in applying the creatine-(methyl-D3) (D3Cr) dilution method to measure skeletal muscle mass (SMM) in young children, the feasibility of deployment in a fielding setting and performance of the method was assessed in a cohort of 4-year-old children in Dhaka, Bangladesh. METHODS: Following D3Cr oral dose (10 mg) administration, single fasting urine samples were collected at 2-4 days (n = 100). Twenty-four-hour post-dose collections and serial spot urine samples on days 2, 3 and 4 were obtained in a subset of participants (n = 10). Urinary creatine, creatinine, D3Cr and D3-creatinine enrichment were analyzed by liquid chromatography-tandem mass spectrometry. Appendicular lean mass (ALM) was measured by dual-energy x-ray absorptiometry and grip strength was measured by a hand-held dynamometer. RESULTS: SMM was measured successfully in 91% of participants, and there were no adverse events. Mean ± SD SMM was greater than ALM (4.5 ± 0.4 and 3.2 ± 0.6 kg, respectively). Precision of SMM was low (intraclass correlation = 0.20; 95% CI: 0.02, 0.75; n = 10). Grip strength was not associated with SMM in multivariable analysis (0.004 kg per 100 g of SMM; 95% CI: -0.031, 0.038; n = 91). CONCLUSIONS: The D3Cr dilution method was feasible in a community setting. However, high within-child variability in SMM estimates suggests the need for further optimization of this approach. IMPACT: The D3-creatine (D3Cr) stable isotope dilution method was considered a feasible method for the estimation of skeletal muscle mass (SMM) in young children in a community setting and was well accepted among participants. SMM was weakly associated with both dual-energy x-ray absorptiometry-derived values of appendicular lean mass and grip strength. High within-child variability in estimated values of SMM suggests that further optimization of the D3Cr stable isotope dilution method is required prior to implementation in community research settings.


Asunto(s)
Creatina , Músculo Esquelético , Humanos , Preescolar , Creatina/metabolismo , Creatinina/metabolismo , Músculo Esquelético/metabolismo , Composición Corporal/fisiología , Bangladesh , Absorciometría de Fotón/métodos , Isótopos/metabolismo
3.
Wilderness Environ Med ; 34(3): 341-345, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37301628

RESUMEN

INTRODUCTION: We have previously described negative energy balance (ie, -9.7±3.4 MJ/d) and weight loss (Δ-1.5 ± 0.7 kg) influenced by high levels of energy expenditure (ie, 17.4±2.6 MJ/d) during remote expeditionary hunting in Alaska. Despite negative energy balance, participants retained skeletal muscle. The purpose of this pilot study was to measure skeletal muscle protein synthesis and examine molecular markers of skeletal muscle protein metabolism under similar conditions of physical and nutrient stress. METHODS: The "virtual biopsy method" was used to evaluate integrated fractional synthetic rates (FSRs) of muscle protein from blood samples in 4 participants. Muscle biopsies were taken to measure molecular markers of muscle protein kinetics (ie, FSTL1, MEF2, MYOD1, B2M, and miR-1-3p, -206, -208b, 23a, and 499a) using real-time polymerase chain reaction. RESULTS: Our findings in 4 participants (2 females [28 and 62 y of age; 66.2 and 71.8 kg body weight; 25.5 and 26.7 kg/m2 body mass index] and 2 males [47 and 56 y of age; 87.5 and 91.4 kg body weight; 26.1 and 28.3 kg/m2 body mass index]) describe mean muscle FSRs of serum carbonic anhydrase (2.4%) and creatine kinase M-type (4.0%) and positive increments in molecular regulation. CONCLUSIONS: Preservation of skeletal muscle under conditions of physical and nutrient stress seems to be supported by positive inflection of skeletal muscle FSR and molecular activation.


Asunto(s)
Proteínas Relacionadas con la Folistatina , Proteínas Musculares , Masculino , Femenino , Humanos , Proteínas Musculares/metabolismo , Alaska , Caza , Proyectos Piloto , Músculo Esquelético , Peso Corporal , Metabolismo Energético , Proteínas Relacionadas con la Folistatina/metabolismo
4.
J Biol Chem ; 296: 100395, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33567340

RESUMEN

Chronic glucocorticoid exposure causes insulin resistance and muscle atrophy in skeletal muscle. We previously identified phosphoinositide-3-kinase regulatory subunit 1 (Pik3r1) as a primary target gene of skeletal muscle glucocorticoid receptors involved in the glucocorticoid-mediated suppression of insulin action. However, the in vivo functions of Pik3r1 remain unclear. Here, we generated striated muscle-specific Pik3r1 knockout (MKO) mice and treated them with a dexamethasone (DEX), a synthetic glucocorticoid. Treating wildtype (WT) mice with DEX attenuated insulin activated Akt activity in liver, epididymal white adipose tissue, and gastrocnemius (GA) muscle. This DEX effect was diminished in GA muscle of MKO mice, therefore, resulting in improved glucose and insulin tolerance in DEX-treated MKO mice. Stable isotope labeling techniques revealed that in WT mice, DEX treatment decreased protein fractional synthesis rates in GA muscle. Furthermore, histology showed that in WT mice, DEX treatment reduced GA myotube diameters. In MKO mice, myotube diameters were smaller than in WT mice, and there were more fast oxidative fibers. Importantly, DEX failed to further reduce myotube diameters. Pik3r1 knockout also decreased basal protein synthesis rate (likely caused by lower 4E-BP1 phosphorylation at Thr37/Thr46) and curbed the ability of DEX to attenuate protein synthesis rate. Finally, the ability of DEX to inhibit eIF2α phosphorylation and insulin-induced 4E-BP1 phosphorylation was reduced in MKO mice. Taken together, these results demonstrate the role of Pik3r1 in glucocorticoid-mediated effects on glucose and protein metabolism in skeletal muscle.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Glucocorticoides/farmacología , Glucosa/metabolismo , Resistencia a la Insulina , Músculo Estriado/efectos de los fármacos , Músculo Estriado/metabolismo , Atrofia Muscular/metabolismo , Animales , Fosfatidilinositol 3-Quinasa Clase Ia/genética , Modelos Animales de Enfermedad , Insulina/metabolismo , Masculino , Ratones , Ratones Noqueados , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Músculo Estriado/patología , Atrofia Muscular/inducido químicamente , Atrofia Muscular/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
5.
Hepatology ; 74(3): 1287-1299, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33743554

RESUMEN

BACKGROUND AND AIMS: It is proposed that impaired expansion of subcutaneous adipose tissue (SAT) and an increase in adipose tissue (AT) fibrosis causes ectopic lipid accumulation, insulin resistance (IR), and metabolically unhealthy obesity. We therefore evaluated whether a decrease in SAT expandability, assessed by measuring SAT lipogenesis (triglyceride [TG] production), and an increase in SAT fibrogenesis (collagen production) are associated with NAFLD and IR in persons with obesity. APPROACH AND RESULTS: In vivo abdominal SAT lipogenesis and fibrogenesis, expression of SAT genes involved in extracellular matrix (ECM) formation, and insulin sensitivity were assessed in three groups of participants stratified by adiposity and intrahepatic TG (IHTG) content: (1) healthy lean with normal IHTG content (Lean-NL; n = 12); (2) obese with normal IHTG content and normal glucose tolerance (Ob-NL; n = 25); and (3) obese with NAFLD and abnormal glucose metabolism (Ob-NAFLD; n = 25). Abdominal SAT TG synthesis rates were greater (P < 0.05) in both the Ob-NL (65.9 ± 4.6 g/wk) and Ob-NAFLD groups (71.1 ± 6.7 g/wk) than the Lean-NL group (16.2 ± 2.8 g/wk) without a difference between the Ob-NL and Ob-NAFLD groups. Abdominal SAT collagen synthesis rate and the composite expression of genes encoding collagens progressively increased from the Lean-NL to the Ob-NL to the Ob-NAFLD groups and were greater in the Ob-NAFLD than the Ob-NL group (P < 0.05). Composite expression of collagen genes was inversely correlated with both hepatic and whole-body insulin sensitivity (P < 0.001). CONCLUSIONS: AT expandability is not impaired in persons with obesity and NAFLD. However, SAT fibrogenesis is greater in persons with obesity and NAFLD than in those with obesity and normal IHTG content, and is inversely correlated with both hepatic and whole-body insulin sensitivity.


Asunto(s)
Colágeno/metabolismo , Intolerancia a la Glucosa/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/metabolismo , Grasa Subcutánea Abdominal/metabolismo , Triglicéridos/metabolismo , Tejido Adiposo/metabolismo , Adulto , Matriz Extracelular/metabolismo , Femenino , Fibrosis , Intolerancia a la Glucosa/complicaciones , Humanos , Resistencia a la Insulina , Lipogénesis , Masculino , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Obesidad/complicaciones , Grasa Subcutánea/metabolismo
6.
J Physiol ; 599(23): 5215-5227, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34569076

RESUMEN

Boys with Duchenne muscular dystrophy (DMD) experience a progressive loss of functional muscle mass, with fibrosis and lipid accumulation. Accurate evaluation of whole-body functional muscle mass (MM) in DMD patients has not previously been possible and the rate of synthesis of muscle proteins remains unexplored. We used non-invasive, stable isotope-based methods from plasma and urine to measure the fractional rate of muscle protein synthesis (FSR) functional muscle mass (MM), and fat free mass (FFM) in 10 DMD (6-17 years) and 9 age-matched healthy subjects. An oral dose of D3 creatine in 70% 2 H2 O was administered to determine MM and FFM followed by daily 70% 2 H2 O to measure protein FSR. Functional MM was profoundly reduced in DMD subjects compared to controls (17% vs. 41% of body weight, P < 0.0001), particularly in older, non-ambulant patients in whom functional MM was extraordinarily low (<13% body weight). We explored the urine proteome to measure FSR of skeletal muscle-derived proteins. Titin, myosin light chain and gelsolin FSRs were substantially lower in DMD subjects compared to controls (27%, 11% and 40% of control, respectively, P < 0.0001) and were strongly correlated. There were no differences in muscle-derived sarcoplasmic proteins FSRs (creatine kinase M-type and carbonic anhydrase-3) measured in plasma. These data demonstrate that both functional MM, body composition and muscle protein synthesis rates can be quantified non-invasively and are markedly different between DMD and control subjects and suggest that the rate of contractile but not sarcoplasmic protein synthesis is affected by a lack of dystrophin. KEY POINTS: Duchenne muscular dystrophy (DMD) results in a progressive loss of functional skeletal muscle but total body functional muscle mass or rates of muscle protein synthesis have not previously been assessed in these patients. D3 -creatine dilution was used to measure total functional muscle mass and oral 2 H2 O was used to examine the rates of muscle protein synthesis non-invasively in boys with DMD and healthy controls using urine samples. Muscle mass was profoundly lower in DMD compared to control subjects, particularly in older, non-ambulant patients. The rates of contractile protein synthesis but not sarcoplasmic proteins were substantially lower in DMD. These results may provide non-invasive biomarkers for disease progression and therapeutic efficacy in DMD and other neuromuscular diseases.


Asunto(s)
Proteínas Contráctiles/biosíntesis , Músculo Esquelético/patología , Distrofia Muscular de Duchenne , Adolescente , Niño , Humanos , Masculino , Contracción Muscular , Distrofia Muscular de Duchenne/fisiopatología , Proteoma
7.
Biol Reprod ; 105(5): 1257-1271, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34309663

RESUMEN

During gestation, the female reproductive tract must maintain pregnancy while concurrently preparing for parturition. Here, we explore the transitions in gene expression and protein turnover (fractional synthesis rates [FSR]) by which the cervix implements a transition from rigid to compliant. Shifts in gene transcription to achieve immune tolerance and alter epithelial cell programs begin in early pregnancy. Subsequently, in mid-to-late pregnancy transcriptional programs emerge that promote structural reorganization of the extracellular matrix (ECM). Stable isotope labeling revealed a striking slowdown of overall FSRs across the proteome on gestation day 6 that reverses in mid-to-late pregnancy. An exception was soluble fibrillar collagens and proteins of collagen assembly, which exhibit high turnover in nonpregnant cervix compared with other tissues and FSRs that continue throughout pregnancy. This finding provides a mechanism to explain how cross-linked collagen is replaced by newly synthesized, less cross-linked collagens, which allows increased tissue compliance during parturition. The rapid transition requires a reservoir of newly synthesized, less cross-linked collagens, which is assured by the high FSR of soluble collagens in the cervix. These findings suggest a previously unrecognized form of "metabolic flexibility" for ECM in the cervix that underlies rapid transformation in compliance to allow parturition.


Asunto(s)
Cuello del Útero/fisiología , Matriz Extracelular/metabolismo , Preñez/metabolismo , Proteoma , Transcriptoma , Animales , Femenino , Ratones , Embarazo
8.
J Nutr ; 151(9): 2551-2563, 2021 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-34132333

RESUMEN

BACKGROUND: Effects of high protein (HP) diets and prolonged energy restriction (ER) on integrated muscle protein kinetics have not been determined. OBJECTIVE: The objective of this study was to measure protein kinetics in response to prolonged ER and HP on muscle protein synthesis (MPS; absolute rates of synthesis) and muscle protein breakdown (MPB; half-lives) for proteins across the muscle proteome. METHODS: Female 6-wk-old obese Zucker rats (Leprfa+/fa+, n = 48) were randomly assigned to one of four diets for 10 wk: ad libitum-standard protein (AL-SP; 15% kcal from protein), AL-HP (35% kcal from protein), ER-SP, and ER-HP (both fed 60% feed consumed by AL-SP). During week 10, heavy/deuterated water (2H2O) was administered by intraperitoneal injection, and isotopic steady-state was maintained via 2H2O in drinking water. Rats were euthanized after 1 wk, and mixed-MPS as well as fractional replacement rate (FRR), relative concentrations, and half-lives of individual muscle proteins were quantified in the gastrocnemius. Data were analyzed using 2-factor (energy × protein) ANOVAs and 2-tailed t-tests or binomial tests as appropriate. RESULTS: Absolute MPS was lower in ER than AL for mixed-MPS (-29.6%; P < 0.001) and MPS of most proteins measured [23/26 myofibrillar, 48/60 cytoplasmic, and 46/60 mitochondrial (P < 0.05)], corresponding with lower gastrocnemius mass in ER compared with AL (-29.4%; P < 0.001). Although mixed-muscle protein half-life was not different between groups, prolonged half-lives were observed for most individual proteins in HP compared with SP in ER and AL (P < 0.001), corresponding with greater gastrocnemius mass in HP than SP (+5.3%; P = 0.043). CONCLUSIONS: ER decreased absolute bulk MPS and most individual MPS rates compared with AL, and HP prolonged half-lives of most proteins across the proteome. These data suggest that HP, independent of energy intake, may reduce MPB, and reductions in MPS may contribute to lower gastrocnemius mass during ER by reducing protein deposition in obese female Zucker rats.


Asunto(s)
Dieta Rica en Proteínas , Proteínas Musculares , Animales , Proteínas en la Dieta , Femenino , Músculo Esquelético , Obesidad , Proteoma , Ratas , Ratas Zucker
9.
Pediatr Res ; 89(6): 1508-1514, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32919390

RESUMEN

BACKGROUND: The rate of accrual of muscle mass in neonates has not been assessed. We describe the D3-creatine (D3Cr) dilution method, a noninvasive assessment of muscle mass in neonates. METHODS: A total of 76 neonates >26-week-old corrected gestational age were enrolled and measured at 2-week intervals while admitted to a neonatal intensive care unit (NICU). Additional measures at 6 and 12-20 months after initial measurement were obtained if available. An enteral dose of 2 mg D3Cr in 0.5 mL 20% 2H2O was used to determine muscle mass and total body water (TBW). RESULTS: Muscle mass by the D3Cr method was strongly associated with TBW and body weight (r = 0.9272, p < 0.0001 and r = 0.9435, p < 0.0001 for all time points and r = 0.6661, p < 0.0001 and r = 0.8634, p < 0.0001, respectively, while in the NICU). Change in muscle mass vs. change in body weight, TBW, and length were also strongly correlated. CONCLUSIONS: The D3Cr dilution method provides a noninvasive assessment of muscle mass accrual in neonates, which has not been previously possible and may be an important new tool for the evaluation of nutritional status and normal growth patterns. IMPACT: We describe a noninvasive method for the measurement of skeletal muscle mass neonates. At the present time, there is no direct measurement of muscle mass in infants available. The D3Cr dilution method is a direct and noninvasive measurement of muscle mass. Using a single enteral dose of D3Cr in 2H2O followed by urine and saliva samples, rapid and substantial accrual of muscle mass and TBW is assessed. Assessment of muscle mass accrual in premature infants may be a strong indicator of nutritional status. Change in muscle mass is strongly related to change in weight and TBW.


Asunto(s)
Creatina/administración & dosificación , Recien Nacido Prematuro , Músculo Esquelético/anatomía & histología , Femenino , Humanos , Técnicas de Dilución del Indicador , Recién Nacido , Masculino , Tamaño de los Órganos
10.
11.
J Physiol ; 596(11): 2091-2120, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29532476

RESUMEN

KEY POINTS: Strategies to enhance the loss of fat while preserving muscle mass during energy restriction are of great importance to prevent sarcopenia in overweight older adults. We show for the first time that the integrated rate of synthesis of numerous individual contractile, cytosolic and mitochondrial skeletal muscle proteins was increased by resistance training (RT) and unaffected by dietary protein intake pattern during energy restriction in free-living, obese older men. We observed a correlation between the synthetic rates of skeletal muscle-derived proteins obtained in serum (creatine kinase M-type, carbonic anhydrase 3) and the synthetic rates of proteins obtained via muscle sampling; and that the synthesis rates of these proteins in serum revealed the stimulatory effects of RT. These results have ramifications for understanding the influence of RT on skeletal muscle and are consistent with the role of RT in maintaining muscle protein synthesis and potentially supporting muscle mass preservation during weight loss. ABSTRACT: We determined how the pattern of protein intake and resistance training (RT) influenced longer-term (2 weeks) integrated myofibrillar protein synthesis (MyoPS) during energy restriction (ER). MyoPS and proteome kinetics were measured during 2 weeks of ER alone and 2 weeks of ER plus RT (ER + RT) in overweight/obese older men. Participants were randomized to consume dietary protein in a balanced (BAL: 25% daily protein per meal × 4 meals) or skewed (SKEW: 7:17:72:4% daily protein per meal) pattern (n = 10 per group). Participants ingested deuterated water during the consecutive 2-week periods, and skeletal muscle biopsies and serum were obtained at the beginning and conclusion of ER and ER + RT. Bulk MyoPS (i.e. synthesis of the myofibrillar protein sub-fraction) and the synthetic rates of numerous individual skeletal muscle proteins were quantified. Bulk MyoPS was not affected by protein distribution during ER or ER + RT (ER: BAL = 1.24 ± 0.31%/day, SKEW = 1.26 ± 0.37%/day; ER + RT: BAL = 1.64 ± 0.48%/day, SKEW = 1.52 ± 0.66%/day) but was ∼26% higher during ER + RT than during ER (P = 0.023). The synthetic rates of 175 of 190 contractile, cytosolic and mitochondrial skeletal muscle proteins, as well as synthesis of muscle-derived proteins measured in serum, creatine kinase M-type (CK-M) and carbonic anhydrase 3 (CA-3), were higher during ER + RT than during ER (P < 0.05). In addition, the synthetic rates of CK-M and CA-3 measured in serum correlated with the synthetic rates of proteins obtained via muscle sampling (P < 0.05). This study provides novel data on the skeletal muscle adaptations to RT and dietary protein distribution.


Asunto(s)
Dieta Reductora/métodos , Proteínas en la Dieta/administración & dosificación , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Obesidad/fisiopatología , Proteoma/análisis , Entrenamiento de Fuerza , Anciano , Índice de Masa Corporal , Metabolismo Energético , Humanos , Masculino , Miofibrillas/metabolismo , Obesidad/terapia
12.
Neurobiol Dis ; 98: 66-76, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27913290

RESUMEN

Cholesterol precursors and cholesterol levels are reduced in brain regions of Huntington's disease (HD) mice. Here we quantified the rate of in vivo de novo cholesterol biosynthesis in the HD brain. Samples from different brain regions and blood of the heterozygous knock-in mouse model carrying 175 CAG repeats (Q175) at different phenotypic stages were processed independently by two research units to quantify cholesterol synthesis rate by 2H2O labeling and measure the concentrations of lathosterol, cholesterol and its brain-specific cholesterol catabolite 24-hydroxy-cholesterol (24OHC) by isotope dilution mass spectrometry. The daily synthesis rate of cholesterol and the corresponding concentration of lathosterol were significantly reduced in the striatum of heterozygous Q175 mice early in the disease course. We also report that the decrease in lathosterol was inversely correlated with CAG-size at symptomatic stage, as observed in striatal samples from an allelic series of HD mice. There was also a significant correlation between the fractional synthesis rates of total cholesterol and 24OHC in brain of wild-type (WT) and Q175 mice, supporting the evidence that plasma 24OHC may reflect cholesterol synthesis in the adult brain. This comprehensive analysis demonstrates consistent cholesterol biosynthesis defects in HD mouse models and suggests that plasma 24OHC may serve as a biomarker of brain cholesterol metabolism.


Asunto(s)
Encéfalo/metabolismo , Colesterol/biosíntesis , Enfermedad de Huntington/metabolismo , Animales , Biomarcadores/sangre , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Técnicas de Sustitución del Gen , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Caracteres Sexuales
13.
Am J Physiol Endocrinol Metab ; 310(6): E405-17, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26714847

RESUMEN

Biomarkers of muscle protein synthesis rate could provide early data demonstrating anabolic efficacy for treating muscle-wasting conditions. Androgenic therapies have been shown to increase muscle mass primarily by increasing the rate of muscle protein synthesis. We hypothesized that the synthesis rate of large numbers of individual muscle proteins could serve as early response biomarkers and potentially treatment-specific signaling for predicting the effect of anabolic treatments on muscle mass. Utilizing selective androgen receptor modulator (SARM) treatment in the ovariectomized (OVX) rat, we applied an unbiased, dynamic proteomics approach to measure the fractional synthesis rates (FSR) of 167-201 individual skeletal muscle proteins in triceps, EDL, and soleus. OVX rats treated with a SARM molecule (GSK212A at 0.1, 0.3, or 1 mg/kg) for 10 or 28 days showed significant, dose-related increases in body weight, lean body mass, and individual triceps but not EDL or soleus weights. Thirty-four out of the 94 proteins measured from the triceps of all rats exhibited a significant, dose-related increase in FSR after 10 days of SARM treatment. For several cytoplasmic proteins, including carbonic anhydrase 3, creatine kinase M-type (CK-M), pyruvate kinase, and aldolase-A, a change in 10-day FSR was strongly correlated (r(2) = 0.90-0.99) to the 28-day change in lean body mass and triceps weight gains, suggesting a noninvasive measurement of SARM effects. In summary, FSR of multiple muscle proteins measured by dynamics of moderate- to high-abundance proteins provides early biomarkers of the anabolic response of skeletal muscle to SARM.


Asunto(s)
Andrógenos/farmacología , Proteínas Musculares/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Proteoma/efectos de los fármacos , Animales , Composición Corporal , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Forma MM de la Creatina-Quinasa/metabolismo , Deuterio , Femenino , Espectrometría de Masas , Proteínas Musculares/biosíntesis , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Tamaño de los Órganos , Ovariectomía , Proteoma/biosíntesis , Ratas , Ratas Sprague-Dawley , Receptores Androgénicos/metabolismo
14.
FASEB J ; 28(6): 2705-14, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24599968

RESUMEN

Improved endurance exercise performance in adult humans after sprint interval training (SIT) has been attributed to mitochondrial biogenesis. However, muscle protein synthesis (MPS) and mitochondrial biogenesis during SIT have not been measured, nor have sex-specific differences. We hypothesized that males and females would have similar rates of MPS, mitochondrial biogenesis, and synthesis of individual proteins during SIT. Deuterium oxide (D2O) was orally administered to 21 adults [11 male, 10 female; mean age, 23±1 yr; body mass index (BMI), 22.8±0.6 kg/m(2); mean± SE] for 4 wk, to measure protein synthesis rates while completing 9 sessions of 4-8 bouts of 30 s duration on a cycle ergometer separated by 4 min of active recovery. Samples of the vastus lateralis were taken before and 48 h after SIT. SIT increased maximum oxygen uptake (VO(2max), males 43.4±2.1-44.0±2.3; females 39.5±0.9-42.5±1.3 ml/kg/min; P=0.002). MPS was greater in the males than in the females in the mixed (~150%; P < 0.001), cytosolic (~135%; P=0.038), and mitochondrial (~135%; P=0.056) fractions. The corresponding ontological clusters of individual proteins were significantly greater in the males than in the females (all P<0.00001). For the first time, we document greater MPS and mitochondrial biogenesis during SIT in males than in females and describe the synthetic response of individual proteins in humans during exercise training.


Asunto(s)
Ejercicio Físico/fisiología , Mitocondrias Musculares/metabolismo , Proteínas Musculares/biosíntesis , Caracteres Sexuales , Óxido de Deuterio , Femenino , Humanos , Masculino , Proteínas Mitocondriales/biosíntesis , Consumo de Oxígeno/fisiología , Educación y Entrenamiento Físico , Resistencia Física/fisiología , Músculo Cuádriceps/metabolismo , Adulto Joven
15.
Mol Cell Proteomics ; 11(12): 1801-14, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22984287

RESUMEN

Calorie restriction (CR) promotes longevity. A prevalent mechanistic hypothesis explaining this effect suggests that protein degradation, including mitochondrial autophagy, is increased with CR, removing damaged proteins and improving cellular fitness. At steady state, increased catabolism must be balanced by increasing mitochondrial biogenesis and protein synthesis, resulting in faster protein replacement rates. To test this hypothesis, we measured replacement kinetics and relative concentrations of hundreds of proteins in vivo in long-term CR and ad libitum-fed mice using metabolic (2)H(2)O-labeling combined with the Stable Isotope Labeling in Mammals protocol and LC-MS/MS analysis of mass isotopomer abundances in tryptic peptides. CR reduced absolute synthesis and breakdown rates of almost all measured hepatic proteins and prolonged the half-lives of most (≈ 80%), particularly mitochondrial proteins (but not ribosomal subunits). Proteins with related functions exhibited coordinated changes in relative concentration and replacement rates. In silico expression pathway interrogation allowed the testing of potential regulators of altered network dynamics (e.g. peroxisome proliferator-activated receptor gamma coactivator 1-alpha). In summary, our combination of dynamic and quantitative proteomics suggests that long-term CR reduces mitochondrial biogenesis and mitophagy. Our findings contradict the theory that CR increases mitochondrial protein turnover and provide compelling evidence that cellular fitness is accompanied by reduced global protein synthetic burden.


Asunto(s)
Restricción Calórica , Hígado/metabolismo , Proteínas Mitocondriales/metabolismo , Proteoma/análisis , Animales , Proliferación Celular , Cromatografía Liquida , Óxido de Deuterio , Metabolismo Energético , Marcaje Isotópico , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , PPAR gamma/metabolismo
16.
PLoS One ; 19(4): e0300140, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38630732

RESUMEN

BACKGROUND: There is emerging evidence that cancer and its treatments may accelerate the normal aging process, increasing the magnitude and rate of decline in functional capacity. This accelerated aging process is hypothesized to hasten the occurrence of common adverse age-related outcomes in cancer survivors, including loss of muscle mass and decrease in physical function. However, there is no data describing age-related loss of muscle mass and its relation to physical function in the long-term in cancer survivors. METHODS: This study protocol describes the use of a novel method of muscle mass measurement, D3-creatine dilution method (D3Cr), in a large sample (n~6000) of community dwelling postmenopausal women from the Women's Health Initiative (WHI). D3Cr will be used to obtain a direct measure of muscle mass remotely. Participants will be drawn from two sub-cohorts embedded within the WHI that have recently completed an in-home visit. Cancer survivors will be drawn from the Life and Longevity After Cancer (LILAC) cohort, and cancer-free controls will be drawn from the WHI Long Life Study 2. The overall objective of this study is to examine the antecedents and consequences of low muscle mass in cancer survivors. The study aims are to: 1) create age-standardized muscle mass percentile curves and z-scores to characterize the distribution of D3- muscle mass in cancer survivors and non-cancer controls, 2) compare muscle mass, physical function, and functional decline in cancer survivors and non- cancer controls, and 3) use machine learning approaches to generate multivariate risk-prediction algorithms to detect low muscle mass. DISCUSSION: The D3Cr method will transform our ability to measure muscle mass in large-scale epidemiologic research. This study is an opportunity to advance our understanding of a key source of morbidity among older and long-term female cancer survivors. This project will fill knowledge gaps, including the antecedents and consequences of low muscle mass, and use innovative methods to overcome common sources of bias in cancer research. The results of this study will be used to develop interventions to mitigate the harmful effects of low muscle mass in older adults and promote healthy survivorship in cancer survivors in the old (>65) and oldest-old (>85) age groups.


Asunto(s)
Creatina , Neoplasias , Humanos , Femenino , Anciano , Anciano de 80 o más Años , Vida Independiente , Posmenopausia , Músculo Esquelético , Salud de la Mujer
17.
Obesity (Silver Spring) ; 32(3): 593-602, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38410080

RESUMEN

OBJECTIVE: The objective of this study was to examine the hypothesis that abdominal and gluteal adipocyte turnover, lipid dynamics, and fibrogenesis are dysregulated among insulin-resistant (IR) compared with insulin-sensitive (IS) adolescents with obesity. METHODS: Seven IS and seven IR adolescents with obesity participated in a 3-h oral glucose tolerance test and a multi-section magnetic resonance imaging scan of the abdominal region to examine body fat distribution patterns and liver fat content. An 8-week 70% deuterated water (2 H2 O) labeling protocol examined adipocyte turnover, lipid dynamics, and fibrogenesis in vivo from biopsied abdominal and gluteal fat. RESULTS: Abdominal and gluteal subcutaneous adipose tissue (SAT) turnover rates of lipid components were similar among IS and IR adolescents with obesity. However, the insoluble collagen (type I, subunit α2) isoform measured from abdominal, but not gluteal, SAT was elevated in IR compared with IS individuals. In addition, abdominal insoluble collagen Iα2 was associated with ratios of visceral-to-total (visceral adipose tissue + SAT) abdominal fat and whole-body and adipose tissue insulin signaling, and it trended toward a positive association with liver fat content. CONCLUSIONS: Altered extracellular matrix dynamics, but not expandability, potentially decreases abdominal SAT lipid storage capacity, contributing to the pathophysiological pathways linking adipose tissue and whole-body IR with altered ectopic storage of lipids within the liver among IR adolescents with obesity.


Asunto(s)
Resistencia a la Insulina , Obesidad Infantil , Niño , Humanos , Adolescente , Resistencia a la Insulina/fisiología , Obesidad Infantil/metabolismo , Insulina/metabolismo , Grasa Subcutánea/diagnóstico por imagen , Grasa Subcutánea/metabolismo , Grasa Intraabdominal/metabolismo , Lípidos , Matriz Extracelular , Colágeno/metabolismo
18.
Artículo en Inglés | MEDLINE | ID: mdl-38367212

RESUMEN

BACKGROUND: How magnetic resonance (MR) derived thigh muscle volume and deuterated creatine dilution derived muscle mass (D3Cr muscle mass) differentially relate to strength, fitness, and other functions in older adults-and whether associations vary by sex-is not known. METHODS: Men (N = 345) and women (N = 482) aged ≥70 years from the Study of Muscle, Mobility, and Aging completed leg extension strength (1-repetition max) and cardiopulmonary exercise testing to assess fitness (VO2peak). Correlations and adjusted regression models stratified by sex were used to assess the association between muscle size measures, study outcomes, and sex interactions. RESULTS: D3Cr muscle mass and MR thigh muscle volume were correlated (men: r = 0.62, women: r = 0.51, p < .001). Each standard deviation (SD) decrement in D3Cr muscle mass was associated with lower 1-repetition max strength (-14 kg men, -4 kg women, p < .001 for both; p-interaction = .003) and lower VO2peak (-79 mL/min men, -30 mL/min women, p < .001 for both, p-interaction: .016). Each SD decrement in MR thigh muscle volume was also associated with lower strength (-32 kg men, -20 kg women, p < .001 for both; p-interaction = .139) and lower VO2peak (-217 mL/min men, -111 mL/min women, p < .001 for both, p-interaction = .010). There were associations, though less consistent, between muscle size or mass with physical performance and function; associations varied by sex. CONCLUSIONS: Less muscle-measured by either D3Cr muscle mass or MR thigh muscle volume-was associated with lower strength and fitness. Varied associations by sex and assessment method suggest consideration be given to which measurement to use in future studies.


Asunto(s)
Músculo Esquelético , Muslo , Masculino , Humanos , Femenino , Anciano , Músculo Esquelético/fisiología , Envejecimiento/fisiología , Rendimiento Físico Funcional , Espectroscopía de Resonancia Magnética , Fuerza Muscular/fisiología
19.
Cell Metab ; 36(4): 745-761.e5, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38569471

RESUMEN

There is considerable heterogeneity in the cardiometabolic abnormalities associated with obesity. We evaluated multi-organ system metabolic function in 20 adults with metabolically healthy obesity (MHO; normal fasting glucose and triglycerides, oral glucose tolerance, intrahepatic triglyceride content, and whole-body insulin sensitivity), 20 adults with metabolically unhealthy obesity (MUO; prediabetes, hepatic steatosis, and whole-body insulin resistance), and 15 adults who were metabolically healthy lean. Compared with MUO, people with MHO had (1) altered skeletal muscle biology (decreased ceramide content and increased expression of genes involved in BCAA catabolism and mitochondrial structure/function); (2) altered adipose tissue biology (decreased expression of genes involved in inflammation and extracellular matrix remodeling and increased expression of genes involved in lipogenesis); (3) lower 24-h plasma glucose, insulin, non-esterified fatty acids, and triglycerides; (4) higher plasma adiponectin and lower plasma PAI-1 concentrations; and (5) decreased oxidative stress. These findings provide a framework of potential mechanisms responsible for MHO and the metabolic heterogeneity of obesity. This study was registered at ClinicalTrials.gov (NCT02706262).


Asunto(s)
Enfermedades Cardiovasculares , Resistencia a la Insulina , Síndrome Metabólico , Obesidad Metabólica Benigna , Adulto , Humanos , Obesidad/metabolismo , Triglicéridos , Síndrome Metabólico/metabolismo , Índice de Masa Corporal , Factores de Riesgo
20.
J Gerontol A Biol Sci Med Sci ; 78(9): 1591-1596, 2023 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-36752568

RESUMEN

BACKGROUND: In contrast to dual-energy x-ray absorptiometry (DXA), the D3-creatine (D3Cr) dilution method provides a direct measure of skeletal muscle mass and in a cohort of older men has been strongly associated with health-related outcomes. However, sensitivity to detect changes in D3Cr-derived muscle mass due to an intervention is limited. METHODS: Twenty-one older adults (≥70 years) with low-to-moderate physical function were randomized to a 15-week high-intensity strength training (ST) or a health education (HE) group. Full-body progressive intensity ST was performed 3 days per week. RESULTS: The mean age was 82.1 years, with 64% females. After 15 weeks, both D3Cr muscle mass (MM; 2.29 kg; 95% CI: 0.22, 4.36) and DXA appendicular lean mass (ALM; 1.04 kg; 95% CI: 0.31, 1.77) were greater in ST group compared to HE. Baseline correlations between D3Cr MM and DXA ALM (r = 0.79; 95% CI: 0.53, 0.92) or total lean body mass (LBM; r = 0.79; 95% CI: 0.52, 0.91) were high. However, longitudinal changes in D3Cr MM were weakly correlated with changes in DXA ALM (r = 0.19; 95% CI: -0.35, 0.64) and LBM (r = 0.40; 95% CI: -0.13, 0.76). More participants showed positive response rates, defined as a >5% increase from baseline, with D3Cr MM (80%) than DXA measures (14%-43%). CONCLUSIONS: A progressive ST intervention in low-functioning older adults increased D3Cr MM and DXA ALM. These data suggest that the D3Cr dilution is potentially sensitive to detect changes in muscle mass in response to resistance exercise training. These results are preliminary and could be used for planning larger trials to replicate these results.


Asunto(s)
Entrenamiento de Fuerza , Sarcopenia , Masculino , Femenino , Humanos , Anciano , Anciano de 80 o más Años , Músculo Esquelético/patología , Creatina , Absorciometría de Fotón/métodos , Composición Corporal/fisiología , Sarcopenia/diagnóstico por imagen , Sarcopenia/patología , Fuerza Muscular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA