Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 590(7846): 504-508, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33536620

RESUMEN

Amplification of chromosomal region 8p11-12 is a common genetic alteration that has been implicated in the aetiology of lung squamous cell carcinoma (LUSC)1-3. The FGFR1 gene is the main candidate driver of tumorigenesis within this region4. However, clinical trials evaluating FGFR1 inhibition as a targeted therapy have been unsuccessful5. Here we identify the histone H3 lysine 36 (H3K36) methyltransferase NSD3, the gene for which is located in the 8p11-12 amplicon, as a key regulator of LUSC tumorigenesis. In contrast to other 8p11-12 candidate LUSC drivers, increased expression of NSD3 correlated strongly with its gene amplification. Ablation of NSD3, but not of FGFR1, attenuated tumour growth and extended survival in a mouse model of LUSC. We identify an LUSC-associated variant NSD3(T1232A) that shows increased catalytic activity for dimethylation of H3K36 (H3K36me2) in vitro and in vivo. Structural dynamic analyses revealed that the T1232A substitution elicited localized mobility changes throughout the catalytic domain of NSD3 to relieve auto-inhibition and to increase accessibility of the H3 substrate. Expression of NSD3(T1232A) in vivo accelerated tumorigenesis and decreased overall survival in mouse models of LUSC. Pathological generation of H3K36me2 by NSD3(T1232A) reprograms the chromatin landscape to promote oncogenic gene expression signatures. Furthermore, NSD3, in a manner dependent on its catalytic activity, promoted transformation in human tracheobronchial cells and growth of xenografted human LUSC cell lines with amplification of 8p11-12. Depletion of NSD3 in patient-derived xenografts from primary LUSCs containing NSD3 amplification or the NSD3(T1232A)-encoding variant attenuated neoplastic growth in mice. Finally, NSD3-regulated LUSC-derived xenografts were hypersensitive to bromodomain inhibition. Thus, our work identifies NSD3 as a principal 8p11-12 amplicon-associated oncogenic driver in LUSC, and suggests that NSD3-dependency renders LUSC therapeutically vulnerable to bromodomain inhibition.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/química , Histonas/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Proteínas Nucleares/metabolismo , Animales , Biocatálisis , Carcinogénesis/genética , Carcinoma de Células Escamosas/genética , Femenino , N-Metiltransferasa de Histona-Lisina/deficiencia , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Neoplasias Pulmonares/genética , Masculino , Metilación , Ratones , Modelos Moleculares , Mutación , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/deficiencia , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Stem Cells ; 41(4): 328-340, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36640125

RESUMEN

Given the increasing popularity of electronic cigarettes (e-cigs), it is imperative to evaluate the potential health risks of e-cigs, especially in users with preexisting health concerns such as pulmonary arterial hypertension (PAH). The aim of the present study was to investigate whether differential susceptibility exists between healthy and patients with PAH to e-cig exposure and the molecular mechanisms contributing to it. Patient-specific induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) from healthy individuals and patients with PAH were used to investigate whether e-cig contributes to the pathophysiology of PAH and affects EC homeostasis in PAH. Our results showed that PAH iPSC-ECs showed a greater amount of damage than healthy iPSC-ECs upon e-cig exposure. Transcriptomic analyses revealed that differential expression of Akt3 may be responsible for increased autophagic flux impairment in PAH iPSC-ECs, which underlies increased susceptibility upon e-cig exposure. Moreover, knockdown of Akt3 in healthy iPSC-ECs significantly induced autophagic flux impairment and endothelial dysfunction, which further increased with e-cig treatment, thus mimicking the PAH cell phenotype after e-cig exposure. In addition, functional disruption of mTORC2 by knocking down Rictor in PAH iPSC-ECs caused autophagic flux impairment, which was mediated by downregulation of Akt3. Finally, pharmacological induction of autophagy via direct inhibition of mTORC1 and indirect activation of mTORC2 with rapamycin reverses e-cig-induced decreased Akt3 expression, endothelial dysfunction, autophagic flux impairment, and decreased cell viability, and migration in PAH iPSC-ECs. Taken together, these data suggest a potential link between autophagy and Akt3-mediated increased susceptibility to e-cig in PAH.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Células Madre Pluripotentes Inducidas , Hipertensión Arterial Pulmonar , Humanos , Hipertensión Arterial Pulmonar/metabolismo , Células Endoteliales/metabolismo , Autofagia , Células Madre Pluripotentes Inducidas/fisiología
3.
Ecotoxicol Environ Saf ; 283: 116793, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39094453

RESUMEN

Biomass-related airborne fine particulate matter (PM2.5) is an important risk factor for chronic obstructive pulmonary disease (COPD). Macrophage polarization has been reported to be involved in PM2.5-induced COPD, but the dynamic characteristics and underlying mechanism of this process remain unclear. Our study established a PM2.5-induced COPD mouse model and revealed that M2 macrophages predominantly presented after 4 and 6 months of PM2.5 exposure, during which a notable increase in MMP12 was observed. Single cell analysis of lung tissues from COPD patients and mice further revealed that M2 macrophages were the dominant macrophage subpopulation in COPD, with MMP12 being involved as a hub gene. In vitro experiments further demonstrated that PM2.5 induced M2 polarization and increased MMP12 expression. Moreover, we found that PM2.5 increased IL-4 expression, STAT6 phosphorylation and nuclear translocation. Nuclear pSTAT6 then bound to the MMP12 promoter region. Furthermore, the inhibition of STAT6 phosphorylation effectively abrogated the PM2.5-induced increase in MMP12. Using a coculture system, we observed a significantly reduced level of E-cadherin in alveolar epithelial cells cocultured with PM2.5-exposed macrophages, while the decrease in E-cadherin was reversed by the addition of an MMP12 inhibitor to the co-culture system. Taken together, these findings indicated that PM2.5 induced M2 macrophage polarization and MMP12 upregulation via the IL-4/STAT6 pathway, which resulted in alveolar epithelial barrier dysfunction and excessive extracellular matrix (ECM) degradation, and ultimately led to COPD progression. These findings may help to elucidate the role of macrophages in COPD, and suggest promising directions for potential therapeutic strategies.

4.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38542214

RESUMEN

Our research focuses on expression patterns in human and mouse embryonic cardiomyocytes and endothelial cells at the single-cell level. We analyzed single-cell datasets containing different species, cardiac chambers, and cell types. We identified developmentally dynamic genes associated with different cellular lineages in the heart and explored their expression and possible roles during cardiac development. We used dynamic time warping, a method that aligns temporal sequences, to compare these developmental stages across two species. Our results indicated that atrial cardiomyocytes from E9.5 to E13.5 in mice corresponded to a human embryo age of approximately 5-6 weeks, whereas in ventricular cardiomyocytes, they corresponded to a human embryo age of 13-15 weeks. The endothelial cells in mouse hearts corresponded to 6-7-week-old human embryos. Next, we focused on expression changes in cardiac transcription factors over time in different species and chambers, and found that Prdm16 might be related to interspecies cardiomyocyte differences. Moreover, we compared the developmental trajectories of cardiomyocytes differentiated from human pluripotent stem cells and embryonic cells. This analysis explored the relationship between their respective developments and provided compelling evidence supporting the relevance of our dynamic time-warping results. These significant findings contribute to a deeper understanding of cardiac development across different species.


Asunto(s)
Células Endoteliales , Miocitos Cardíacos , Humanos , Animales , Ratones , Lactante , Miocitos Cardíacos/metabolismo , Diferenciación Celular , Embrión de Mamíferos , Atrios Cardíacos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
J Med Virol ; 95(1): e28283, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36333280

RESUMEN

We agree that smoking might be a risk factor for the severity of COVID-19, but in our previous study, smoking was not so robust compared with our conclusion. Also, we strongly agreed that COVID-19 patients with diabetes or other chronic diseases might worsen the situation of the disease. But these factors were out of the scope of our study and we had published other research on this topic related to diabetes. Because of the limited sample size and original medical records, our study could not cover many factors. But we wish our study will be a useful and meaningful pilot study for future studies.

6.
Circulation ; 143(21): 2074-2090, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-33764154

RESUMEN

BACKGROUND: Metabolic alterations provide substrates that influence chromatin structure to regulate gene expression that determines cell function in health and disease. Heightened proliferation of smooth muscle cells (SMC) leading to the formation of a neointima is a feature of pulmonary arterial hypertension (PAH) and systemic vascular disease. Increased glycolysis is linked to the proliferative phenotype of these SMC. METHODS: RNA sequencing was applied to pulmonary arterial SMC (PASMC) from PAH patients with and without a BMPR2 (bone morphogenetic receptor 2) mutation versus control PASMC to uncover genes required for their heightened proliferation and glycolytic metabolism. Assessment of differentially expressed genes established metabolism as a major pathway, and the most highly upregulated metabolic gene in PAH PASMC was aldehyde dehydrogenase family 1 member 3 (ALDH1A3), an enzyme previously linked to glycolysis and proliferation in cancer cells and systemic vascular SMC. We determined if these functions are ALDH1A3-dependent in PAH PASMC, and if ALDH1A3 is required for the development of pulmonary hypertension in a transgenic mouse. Nuclear localization of ALDH1A3 in PAH PASMC led us to determine whether and how this enzyme coordinately regulates gene expression and metabolism in PAH PASMC. RESULTS: ALDH1A3 mRNA and protein were increased in PAH versus control PASMC, and ALDH1A3 was required for their highly proliferative and glycolytic properties. Mice with Aldh1a3 deleted in SMC did not develop hypoxia-induced pulmonary arterial muscularization or pulmonary hypertension. Nuclear ALDH1A3 converted acetaldehyde to acetate to produce acetyl coenzyme A to acetylate H3K27, marking active enhancers. This allowed for chromatin modification at NFYA (nuclear transcription factor Y subunit α) binding sites via the acetyltransferase KAT2B (lysine acetyltransferase 2B) and permitted NFY-mediated transcription of cell cycle and metabolic genes that is required for ALDH1A3-dependent proliferation and glycolysis. Loss of BMPR2 in PAH SMC with or without a mutation upregulated ALDH1A3, and transcription of NFYA and ALDH1A3 in PAH PASMC was ß-catenin dependent. CONCLUSIONS: Our studies have uncovered a metabolic-transcriptional axis explaining how dividing cells use ALDH1A3 to coordinate their energy needs with the epigenetic and transcriptional regulation of genes required for SMC proliferation. They suggest that selectively disrupting the pivotal role of ALDH1A3 in PAH SMC, but not endothelial cells, is an important therapeutic consideration.


Asunto(s)
Aldehído Oxidorreductasas/genética , Regulación de la Expresión Génica , Hipertensión Arterial Pulmonar/genética , Aldehído Oxidorreductasas/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Liso/metabolismo , Músculo Liso/patología , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal
7.
J Med Virol ; 94(10): 4727-4734, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35656698

RESUMEN

Comorbidities such as hypertension could exacerbate symptoms of coronaviral disease 2019 (COVID)-19 infection. Patients with hypertension may receive both anti-COVID-19 and antihypertension therapies when infected with COVID-19. However, it is not clear how different classes of anti-hypertension drugs impact the outcome of COVID-19 treatment. Herein, we explore the association between the inpatient use of different classes of anti-hypertension drugs and mortality among patients with hypertension hospitalized with COVID-19. We totally collected data from 278 patients with hypertension diagnosed with COVID-19 admitted to hospitals in Wuhan from February 1 to April 1, 2020. A retrospective study was conducted and single-cell RNA-sequencing (RNA-Seq) analysis of treatment-related genes was performed. The results showed that Angiotensin II receptor blocker (ARB) and calcium channel blocker (CCB) drugs significantly increased the survival rate but the use of angiotensin-converting enzyme inhibitor/ß-block/diuretic drugs did not affect the mortality caused by COVID-19. Based on the analysis of four public data sets of single-cell RNA-Seq on COVID-19 patients, we concluded that JUN, LST1 genes may play a role in the effect of ARB on COVID-19-related mortality, whereas CALM1 gene may contribute to the effect of CCB on COVID-19-related mortality. Our results provide guidance on the selection of antihypertension drugs for hypertensive patients infected with COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Hipertensión , Antagonistas de Receptores de Angiotensina/uso terapéutico , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Antihipertensivos/uso terapéutico , COVID-19/complicaciones , Bloqueadores de los Canales de Calcio/uso terapéutico , Biología Computacional , Humanos , Hipertensión/complicaciones , Hipertensión/tratamiento farmacológico , Estudios Retrospectivos , SARS-CoV-2
8.
Stem Cells ; 38(7): 822-833, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32232889

RESUMEN

Patient-derived pluripotent stem cells (PSCs) have greatly transformed the current understanding of human heart development and cardiovascular disease. Cardiomyocytes derived from personalized PSCs are powerful tools for modeling heart disease and performing patient-based cardiac toxicity testing. However, these PSC-derived cardiomyocytes (PSC-CMs) are a mixed population of atrial-, ventricular-, and pacemaker-like cells in the dish, hindering the future of precision cardiovascular medicine. Recent insights gleaned from the developing heart have paved new avenues to refine subtype-specific cardiomyocytes from patients with known pathogenic genetic variants and clinical phenotypes. Here, we discuss the recent progress on generating subtype-specific (atrial, ventricular, and nodal) cardiomyocytes from the perspective of embryonic heart development and how human pluripotent stem cells will expand our current knowledge on molecular mechanisms of cardiovascular disease and the future of precision medicine.


Asunto(s)
Cardiopatías , Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Diferenciación Celular/genética , Humanos , Miocitos Cardíacos , Medicina de Precisión
9.
Altern Ther Health Med ; 27(S1): 4-11, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33421047

RESUMEN

CONTEXT: The increasing number of confirmed cases of COVID-19 globally is shocking every day. US daily deaths have numbered over one-thousand people per day for nearly 3 days (from November 18, 2020 to November 20, 2020), and total deaths have exceeded 250 000 as of November 21, 2020, which drives the medical community to search for trends to provide an early warning of rising numbers of cases and to prevent future increases. OBJECTIVE: The study intended to evaluate available US COVID-19 data to determine the possibility of predicting the spread of COVID-19 in the USA. DESIGN: The research team collected US COVID-19 data from a time-series view and established a seasonal autoregressive integrated moving average (SARIMA) model to predict trends. RESULTS: According to the spatial and temporal distribution of cumulative confirmed cases, US COVID-19 cases are mainly concentrated in areas with high population density, with that variable having a positive correlation to the number of confirmed cases and deaths. The correlation coefficients are 0.95 and 0.817, respectively, indicating that the transmission of COVID-19 in the USA is characterized by agglomeration. After exploring the impact of population density, the research team established a SARIMA model to predict the trends, finding that US COVID-19 cases will continue to go up. CONCLUSIONS: By combining knowledge of the statistical features of the virus with modeling findings, the study determined a method that can improve understanding of the serious pandemic, paving the way toward the development of predictive and preventative solutions.


Asunto(s)
COVID-19 , Predicción , Humanos , Pandemias , SARS-CoV-2
10.
Cancer Control ; 27(1): 1073274820960467, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32938231

RESUMEN

Patients with lung cancer are presumed to be at high risk from COVID-19 infection due to underlying malignancy. A total of 31 COVID-19 patients with pre-diagnosed lung cancer and 186 age and sex matched COVID-19 patients without cancer in 6 hospitals in Wuhan, China were identified in our study. There was a significantly higher level of IL-6 in lung cancer group showed by multifactorial analysis. The restricted mean survival time in 10, 20, and 53 days in COVID-19 patients with lung cancer were ealier than non-cancer COVID-19 patients in the same observation time (all P values < 0.05). Our results indicated that pre-diagnosed lung cancer was associated with higher morbidity and mortality in COVID-19 patients.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/epidemiología , Neoplasias Pulmonares/complicaciones , Pandemias , Neumonía Viral/epidemiología , COVID-19 , China/epidemiología , Infecciones por Coronavirus/complicaciones , Femenino , Hospitalización/tendencias , Humanos , Neoplasias Pulmonares/epidemiología , Masculino , Persona de Mediana Edad , Neumonía Viral/complicaciones , Estudios Retrospectivos , Factores de Riesgo , SARS-CoV-2 , Tasa de Supervivencia/tendencias
11.
Proc Natl Acad Sci U S A ; 114(52): E11111-E11120, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29203658

RESUMEN

Patient-specific pluripotent stem cells (PSCs) can be generated via nuclear reprogramming by transcription factors (i.e., induced pluripotent stem cells, iPSCs) or by somatic cell nuclear transfer (SCNT). However, abnormalities and preclinical application of differentiated cells generated by different reprogramming mechanisms have yet to be evaluated. Here we investigated the molecular and functional features, and drug response of cardiomyocytes (PSC-CMs) and endothelial cells (PSC-ECs) derived from genetically relevant sets of human iPSCs, SCNT-derived embryonic stem cells (nt-ESCs), as well as in vitro fertilization embryo-derived ESCs (IVF-ESCs). We found that differentiated cells derived from isogenic iPSCs and nt-ESCs showed comparable lineage gene expression, cellular heterogeneity, physiological properties, and metabolic functions. Genome-wide transcriptome and DNA methylome analysis indicated that iPSC derivatives (iPSC-CMs and iPSC-ECs) were more similar to isogenic nt-ESC counterparts than those derived from IVF-ESCs. Although iPSCs and nt-ESCs shared the same nuclear DNA and yet carried different sources of mitochondrial DNA, CMs derived from iPSC and nt-ESCs could both recapitulate doxorubicin-induced cardiotoxicity and exhibited insignificant differences on reactive oxygen species generation in response to stress condition. We conclude that molecular and functional characteristics of differentiated cells from human PSCs are primarily attributed to the genetic compositions rather than the reprogramming mechanisms (SCNT vs. iPSCs). Therefore, human iPSCs can replace nt-ESCs as alternatives for generating patient-specific differentiated cells for disease modeling and preclinical drug testing.


Asunto(s)
Diferenciación Celular , Metilación de ADN , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , Células Madre Embrionarias Humanas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Técnicas de Transferencia Nuclear , Células Endoteliales/citología , Estudio de Asociación del Genoma Completo , Células Madre Embrionarias Humanas/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología
12.
Circ Res ; 121(11): 1237-1250, 2017 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-29030344

RESUMEN

RATIONALE: Regulatory DNA elements in the human genome play important roles in determining the transcriptional abundance and spatiotemporal gene expression during embryonic heart development and somatic cell reprogramming. It is not well known how chromatin marks in regulatory DNA elements are modulated to establish cell type-specific gene expression in the human heart. OBJECTIVE: We aimed to decipher the cell type-specific epigenetic signatures in regulatory DNA elements and how they modulate heart-specific gene expression. METHODS AND RESULTS: We profiled genome-wide transcriptional activity and a variety of epigenetic marks in the regulatory DNA elements using massive RNA-seq (n=12) and ChIP-seq (chromatin immunoprecipitation combined with high-throughput sequencing; n=84) in human endothelial cells (CD31+CD144+), cardiac progenitor cells (Sca-1+), fibroblasts (DDR2+), and their respective induced pluripotent stem cells. We uncovered 2 classes of regulatory DNA elements: class I was identified with ubiquitous enhancer (H3K4me1) and promoter (H3K4me3) marks in all cell types, whereas class II was enriched with H3K4me1 and H3K4me3 in a cell type-specific manner. Both class I and class II regulatory elements exhibited stimulatory roles in nearby gene expression in a given cell type. However, class I promoters displayed more dominant regulatory effects on transcriptional abundance regardless of distal enhancers. Transcription factor network analysis indicated that human induced pluripotent stem cells and somatic cells from the heart selected their preferential regulatory elements to maintain cell type-specific gene expression. In addition, we validated the function of these enhancer elements in transgenic mouse embryos and human cells and identified a few enhancers that could possibly regulate the cardiac-specific gene expression. CONCLUSIONS: Given that a large number of genetic variants associated with human diseases are located in regulatory DNA elements, our study provides valuable resources for deciphering the epigenetic modulation of regulatory DNA elements that fine-tune spatiotemporal gene expression in human cardiac development and diseases.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/genética , ADN/genética , Células Endoteliales/metabolismo , Epigénesis Genética , Fibroblastos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Elementos Reguladores de la Transcripción , Animales , Células Cultivadas , Reprogramación Celular , Técnicas de Reprogramación Celular , Cromatina/metabolismo , ADN/metabolismo , Metilación de ADN , Regulación del Desarrollo de la Expresión Génica , Genotipo , Histonas/genética , Histonas/metabolismo , Humanos , Ratones Transgénicos , Fenotipo , Regiones Promotoras Genéticas , Transfección
13.
Circ Res ; 120(10): 1561-1571, 2017 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-28246128

RESUMEN

RATIONALE: Targeted genetic engineering using programmable nucleases such as transcription activator-like effector nucleases (TALENs) is a valuable tool for precise, site-specific genetic modification in the human genome. OBJECTIVE: The emergence of novel technologies such as human induced pluripotent stem cells (iPSCs) and nuclease-mediated genome editing represent a unique opportunity for studying cardiovascular diseases in vitro. METHODS AND RESULTS: By incorporating extensive literature and database searches, we designed a collection of TALEN constructs to knockout 88 human genes that are associated with cardiomyopathies and congenital heart diseases. The TALEN pairs were designed to induce double-strand DNA break near the starting codon of each gene that either disrupted the start codon or introduced a frameshift mutation in the early coding region, ensuring faithful gene knockout. We observed that all the constructs were active and disrupted the target locus at high frequencies. To illustrate the utility of the TALEN-mediated knockout technique, 6 individual genes (TNNT2, LMNA/C, TBX5, MYH7, ANKRD1, and NKX2.5) were knocked out with high efficiency and specificity in human iPSCs. By selectively targeting a pathogenic mutation (TNNT2 p.R173W) in patient-specific iPSC-derived cardiac myocytes, we demonstrated that the knockout strategy ameliorates the dilated cardiomyopathy phenotype in vitro. In addition, we modeled the Holt-Oram syndrome in iPSC-cardiac myocytes in vitro and uncovered novel pathways regulated by TBX5 in human cardiac myocyte development. CONCLUSIONS: Collectively, our study illustrates the powerful combination of iPSCs and genome editing technologies for understanding the biological function of genes, and the pathological significance of genetic variants in human cardiovascular diseases. The methods, strategies, constructs, and iPSC lines developed in this study provide a validated, readily available resource for cardiovascular research.


Asunto(s)
Enfermedades Cardiovasculares/genética , Técnicas de Inactivación de Genes/métodos , Biblioteca de Genes , Ingeniería Genética/métodos , Células Madre Pluripotentes Inducidas/fisiología , Secuencia de Bases , Enfermedades Cardiovasculares/terapia , Células Cultivadas , Marcación de Gen/métodos , Humanos , Células Madre Pluripotentes Inducidas/trasplante
14.
Proc Natl Acad Sci U S A ; 113(34): 9623-8, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27506785

RESUMEN

Repeated cocaine exposure regulates transcriptional regulation within the nucleus accumbens (NAc), and epigenetic mechanisms-such as histone acetylation and methylation on Lys residues-have been linked to these lasting actions of cocaine. In contrast to Lys methylation, the role of histone Arg (R) methylation remains underexplored in addiction models. Here we show that protein-R-methyltransferase-6 (PRMT6) and its associated histone mark, asymmetric dimethylation of R2 on histone H3 (H3R2me2a), are decreased in the NAc of mice and rats after repeated cocaine exposure, including self-administration, and in the NAc of cocaine-addicted humans. Such PRMT6 down-regulation occurs selectively in NAc medium spiny neurons (MSNs) expressing dopamine D2 receptors (D2-MSNs), with opposite regulation occurring in D1-MSNs, and serves to protect against cocaine-induced addictive-like behavioral abnormalities. Using ChIP-seq, we identified Src kinase signaling inhibitor 1 (Srcin1; also referred to as p140Cap) as a key gene target for reduced H3R2me2a binding, and found that consequent Srcin1 induction in the NAc decreases Src signaling, cocaine reward, and the motivation to self-administer cocaine. Taken together, these findings suggest that suppression of Src signaling in NAc D2-MSNs, via PRMT6 and H3R2me2a down-regulation, functions as a homeostatic brake to restrain cocaine action, and provide novel candidates for the development of treatments for cocaine addiction.


Asunto(s)
Proteínas Portadoras/genética , Trastornos Relacionados con Cocaína/metabolismo , Cocaína/administración & dosificación , Histonas/metabolismo , Núcleo Accumbens/metabolismo , Procesamiento Proteico-Postraduccional , Acetilación , Animales , Proteínas Portadoras/metabolismo , Trastornos Relacionados con Cocaína/genética , Trastornos Relacionados con Cocaína/patología , Histonas/genética , Humanos , Masculino , Metilación , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/patología , Núcleo Accumbens/patología , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo
15.
Stem Cells ; 35(10): 2138-2149, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28710827

RESUMEN

Both human embryonic stem cell-derived cardiomyocytes (ESC-CMs) and human induced pluripotent stem cell-derived CMs (iPSC-CMs) can serve as unlimited cell sources for cardiac regenerative therapy. However, the functional equivalency between human ESC-CMs and iPSC-CMs for cardiac regenerative therapy has not been demonstrated. Here, we performed a head-to-head comparison of ESC-CMs and iPSC-CMs in their ability to restore cardiac function in a rat myocardial infarction (MI) model as well as their exosomal secretome. Human ESCs and iPSCs were differentiated into CMs using small molecule inhibitors. Fluorescence-activated cell sorting analysis confirmed ∼85% and ∼83% of CMs differentiated from ESCs and iPSCs, respectively, were positive for cardiac troponin T. At a single-cell level, both cell types displayed similar calcium handling and electrophysiological properties, with gene expression comparable with the human fetal heart marked by striated sarcomeres. Sub-acute transplantation of ESC-CMs and iPSC-CMs into nude rats post-MI improved cardiac function, which was associated with increased expression of angiogenic genes in vitro following hypoxia. Profiling of exosomal microRNAs (miRs) and long non-coding RNAs (lncRNAs) revealed that both groups contain an identical repertoire of miRs and lncRNAs, including some that are known to be cardioprotective. We demonstrate that both ESC-CMs and iPSC-CMs can facilitate comparable cardiac repair. This is advantageous because, unlike allogeneic ESC-CMs used in therapy, autologous iPSC-CMs could potentially avoid immune rejection when used for cardiac cell transplantation in the future. Stem Cells 2017;35:2138-2149.


Asunto(s)
Células Madre Embrionarias Humanas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Diferenciación Celular , Células Cultivadas , Exosomas , Humanos
16.
Am J Respir Crit Care Med ; 195(7): 930-941, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-27779452

RESUMEN

RATIONALE: Idiopathic or heritable pulmonary arterial hypertension is characterized by loss and obliteration of lung vasculature. Endothelial cell dysfunction is pivotal to the pathophysiology, but different causal mechanisms may reflect a need for patient-tailored therapies. OBJECTIVES: Endothelial cells differentiated from induced pluripotent stem cells were compared with pulmonary arterial endothelial cells from the same patients with idiopathic or heritable pulmonary arterial hypertension, to determine whether they shared functional abnormalities and altered gene expression patterns that differed from those in unused donor cells. We then investigated whether endothelial cells differentiated from pluripotent cells could serve as surrogates to test emerging therapies. METHODS: Functional changes assessed included adhesion, migration, tube formation, and propensity to apoptosis. Expression of bone morphogenetic protein receptor type 2 (BMPR2) and its target, collagen IV, signaling of the phosphorylated form of the mothers against decapentaplegic proteins (pSMAD1/5), and transcriptomic profiles were also analyzed. MEASUREMENTS AND MAIN RESULTS: Native pulmonary arterial and induced pluripotent stem cell-derived endothelial cells from patients with idiopathic and heritable pulmonary arterial hypertension compared with control subjects showed a similar reduction in adhesion, migration, survival, and tube formation, and decreased BMPR2 and downstream signaling and collagen IV expression. Transcriptomic profiling revealed high kisspeptin 1 (KISS1) related to reduced migration and low carboxylesterase 1 (CES1), to impaired survival in patient cells. A beneficial angiogenic response to potential therapies, FK506 and Elafin, was related to reduced slit guidance ligand 3 (SLIT3), an antimigratory factor. CONCLUSIONS: Despite the site of disease in the lung, our study indicates that induced pluripotent stem cell-derived endothelial cells are useful surrogates to uncover novel features related to disease mechanisms and to better match patients to therapies.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Expresión Génica/genética , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/fisiopatología , Células Madre Pluripotentes Inducidas , Adolescente , Adulto , Diferenciación Celular/genética , Células Cultivadas , Células Endoteliales/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sensibilidad y Especificidad , Transducción de Señal/genética
17.
J Neurosci ; 36(14): 3954-61, 2016 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-27053203

RESUMEN

ATP-dependent chromatin remodeling proteins are being implicated increasingly in the regulation of complex behaviors, including models of several psychiatric disorders. Here, we demonstrate that Baz1b, an accessory subunit of the ISWI family of chromatin remodeling complexes, is upregulated in the nucleus accumbens (NAc), a key brain reward region, in both chronic cocaine-treated mice and mice that are resilient to chronic social defeat stress. In contrast, no regulation is seen in mice that are susceptible to this chronic stress. Viral-mediated overexpression of Baz1b, along with its associated subunit Smarca5, in mouse NAc is sufficient to potentiate both rewarding responses to cocaine, including cocaine self-administration, and resilience to chronic social defeat stress. However, despite these similar, proreward behavioral effects, genome-wide mapping of BAZ1B in NAc revealed mostly distinct subsets of genes regulated by these chromatin remodeling proteins after chronic exposure to either cocaine or social stress. Together, these findings suggest important roles for BAZ1B and its associated chromatin remodeling complexes in NAc in the regulation of reward behaviors to distinct emotional stimuli and highlight the stimulus-specific nature of the actions of these regulatory proteins. SIGNIFICANCE STATEMENT: We show that BAZ1B, a component of chromatin remodeling complexes, in the nucleus accumbens regulates reward-related behaviors in response to chronic exposure to both rewarding and aversive stimuli by regulating largely distinct subsets of genes.


Asunto(s)
Conducta Animal/fisiología , Emociones/fisiología , Núcleo Accumbens/fisiología , Recompensa , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Adenosina Trifosfatasas/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Cocaína/farmacología , Epigénesis Genética/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Ratas , Ratas Sprague-Dawley , Autoadministración , Medio Social , Estrés Psicológico
18.
Am J Pathol ; 186(9): 2500-14, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27456128

RESUMEN

Reduced endothelial-pericyte interactions are linked to progressive small vessel loss in pulmonary arterial hypertension (PAH), but the molecular mechanisms underlying this disease remain poorly understood. To identify relevant gene candidates associated with aberrant pericyte behavior, we performed a transcriptome analysis of patient-derived donor control and PAH lung pericytes followed by functional genomics analysis. Compared with donor control cells, PAH pericytes had significant enrichment of genes involved in various metabolic processes, the top hit being PDK4, a gene coding for an enzyme that suppresses mitochondrial activity in favor of glycolysis. Given reports that link reduced mitochondrial activity with increased PAH cell proliferation, we hypothesized that increased PDK4 is associated with PAH pericyte hyperproliferation and reduced endothelial-pericyte interactions. We found that PDK4 gene and protein expression was significantly elevated in PAH pericytes and correlated with reduced mitochondrial metabolism, higher rates of glycolysis, and hyperproliferation. Importantly, reducing PDK4 levels restored mitochondrial metabolism, reduced cell proliferation, and improved endothelial-pericyte interactions. To our knowledge, this is the first study that documents significant differences in gene expression between human donor control and PAH lung pericytes and the link between mitochondrial dysfunction and aberrant endothelial-pericyte interactions in PAH. Comprehensive characterization of these candidate genes could provide novel therapeutic targets to improve endothelial-pericyte interactions and prevent small vessel loss in PAH.


Asunto(s)
Células Endoteliales/metabolismo , Hipertensión Pulmonar/patología , Pericitos/metabolismo , Proteínas Serina-Treonina Quinasas/biosíntesis , Western Blotting , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Transcriptoma
19.
Proc Natl Acad Sci U S A ; 111(5): 2005-10, 2014 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-24449909

RESUMEN

Many of the long-term effects of cocaine on the brain's reward circuitry have been shown to be mediated by alterations in gene expression. Several chromatin modifications, including histone acetylation and methylation, have been implicated in this regulation, but the effect of other histone modifications remains poorly understood. Poly(ADP-ribose) polymerase-1 (PARP-1), a ubiquitous and abundant nuclear protein, catalyzes the synthesis of a negatively charged polymer called poly(ADP-ribose) or PAR on histones and other substrate proteins and forms transcriptional regulatory complexes with several other chromatin proteins. Here, we identify an essential role for PARP-1 in cocaine-induced molecular, neural, and behavioral plasticity. Repeated cocaine administration, including self-administration, increased global levels of PARP-1 and its mark PAR in mouse nucleus accumbens (NAc), a key brain reward region. Using PARP-1 inhibitors and viral-mediated gene transfer, we established that PARP-1 induction in NAc mediates enhanced behavioral responses to cocaine, including increased self-administration of the drug. Using chromatin immunoprecipitation sequencing, we demonstrated a global, genome-wide enrichment of PARP-1 in NAc of cocaine-exposed mice and identified several PARP-1 target genes that could contribute to the lasting effects of cocaine. Specifically, we identified sidekick-1--important for synaptic connections during development--as a critical PARP-1 target gene involved in cocaine's behavioral effects as well as in its ability to induce dendritic spines on NAc neurons. These findings establish the involvement of PARP-1 and PARylation in the long-term actions of cocaine.


Asunto(s)
Cocaína/farmacología , Poli Adenosina Difosfato Ribosa/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Inmunoprecipitación de Cromatina , Cocaína/administración & dosificación , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Genoma/genética , Inmunoglobulina G/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/enzimología , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Unión Proteica/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Especificidad por Sustrato/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
20.
J Neurosci ; 35(7): 3100-11, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25698746

RESUMEN

Previous studies have shown that chronic cocaine administration induces SIRT1, a Class III histone deacetylase, in the nucleus accumbens (NAc), a key brain reward region, and that such induction influences the gene regulation and place conditioning effects of cocaine. To determine the mechanisms by which SIRT1 mediates cocaine-induced plasticity in NAc, we used chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-seq), 1 d after 7 daily cocaine (20 mg/kg) or saline injections, to map SIRT1 binding genome-wide in mouse NAc. Our unbiased results revealed two modes of SIRT1 action. First, despite its induction in NAc, chronic cocaine causes depletion of SIRT1 from most affected gene promoters in concert with enrichment of H4K16ac (itself a deacetylation target of SIRT1), which is associated with increased expression of these genes. Second, we deduced the forkhead transcription factor (FOXO) family to be a downstream mechanism through which SIRT1 regulates cocaine action. We proceeded to demonstrate that SIRT1 induction causes the deacetylation and activation of FOXO3a in NAc, which leads to the induction of several known FOXO3a gene targets in other systems. Finally, we directly establish a role for FOXO3a in promoting cocaine-elicited behavioral responses by use of viral-mediated gene transfer: we show that overexpressing FOXO3a in NAc enhances cocaine place conditioning. The discovery of these two actions of SIRT1 in NAc in the context of behavioral adaptations to cocaine represents an important step forward in advancing our understanding of the molecular adaptations underlying cocaine action.


Asunto(s)
Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Factores de Transcripción Forkhead/metabolismo , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Sirtuina 1/metabolismo , Análisis de Varianza , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Inmunoprecipitación de Cromatina , Condicionamiento Operante/efectos de los fármacos , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Transferencia de Gen , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Sirtuina 1/genética , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA