Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
J Invertebr Pathol ; 203: 108070, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311231

RESUMEN

Consistent efficacy is required for entomopathogenic nematodes to gain wider adoption as biocontrol agents. Recently, we demonstrated that when exposed to nematode pheromone blends, entomopathogenic nematodes showed increased dispersal, infectivity, and efficacy under laboratory and greenhouse conditions. Prior to this study, the impact of entomopathogenic nematode-pheromone combinations on field efficacy had yet to be studied. Steinernema feltiae is a commercially available entomopathogenic nematode that has been shown to increase mortality in insect pests such as the pecan weevil Curculio caryae. In this study, the pecan weevil was used as a model system to evaluate changes in S. feltiae efficacy when treated with a partially purified ascaroside pheromone blend. Following exposure to the pheromone blend, the efficacy of S. feltiae significantly increased as measured with decreased C. caryae survival despite unfavorable environmental conditions. The results of this study highlight a potential new avenue for using entomopathogenic nematodes in field conditions. With increased efficacy, using entomopathogenic nematodes will reduce reliance on conventional management methods in pecan production, translating into more environmentally acceptable practices.


Asunto(s)
Carya , Rabdítidos , Gorgojos , Animales , Feromonas/farmacología , Control Biológico de Vectores/métodos
2.
J Nematol ; 56(1): 20240018, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38721061

RESUMEN

In the southern United States, corn earworm, Helicoverpa zea (Boddie), and soybean looper, Chrysodeixis includens (Walker) are economically important crop pests. Although Bt crops initially provided effective control of target pests such as H. zea, many insect pests have developed resistance to these Bt crops. Alternative approaches are needed, including biological control agents such as entomopathogenic nematodes (EPNs). However, the effectiveness of EPNs for aboveground applications can be limited due to issues such as desiccation and ultraviolet radiation. Effective adjuvants are needed to overcome these problems. Ten strains of EPNs were tested for virulence against eggs, first to fourth instars, fifth instars, and pupae of H. zea and C. includens in the laboratory. These 10 EPN strains were Heterorhabditis bacteriophora (HP88 and VS strains), H. floridensis (K22 strain), Hgkesha (Kesha strain), Steinernema carpocapsae (All and Cxrd strains), S. feltiae (SN strain), S. rarum (17c+e strain), and S. riobrave (355 and 7-12 strains). EPNs could infect eggs of H. zea or C. includens in the laboratory, but the infection was low. The mortality caused by 10 EPN strains in seven days was significantly higher for the first to fourth instars of H. zea compared to the control, as was the fifth instars of H. zea. Similarly, for the first to fourth and fifth instars of C. includens, the mortality was significantly higher compared to the controls, respectively. However, only S. riobrave (355) had significantly higher mortality than the control for the pupae of H. zea. For the pupae of C. includens, except for H. bacteriophora (HP88), S. rarum (17c+e), and H. floridensis (K22), the mortality of the other seven strains was significantly higher than the control. Subsequently, S. carpocapsae (All) and S. riobrave (7-12) were chosen for efficacy testing in the field with an adjuvant 0.066% Southern Ag Surfactant (SAg Surfactant). In field experiments, the SAg Surfactant treatment significantly increased the mortality and EPN infection for S. carpocapsae (All) on first instars of H. zea in corn plant whorls. On soybean plants, with the SAg Surfactant, S. carpocapsae (All) was more effective than S. riobrave (7-12) on fifth instars of C. includens. This study indicates that EPNs can control H. zea and C. includens, and SAg Surfactant can enhance EPN efficacy.

3.
J Invertebr Pathol ; 196: 107851, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36400242

RESUMEN

Entomopathogenic nematodes (EPNs) are susceptible to abiotic environmental factors including ultraviolet (UV) radiation, which affects the survival and efficacy. This study evaluated nanoparticle (NP) formulations for protecting Steinernema carpocapsae infective juveniles (IJs) from UV radiation. First, silica-NH2 NPs at oil-to-water ratios of 2:8, 3:7 and 4:6 were compared with Barricade Fire Gel (1 % and 2 %) and a water control (aqueous IJs) by exposing IJs to UV light (254 nm) for 0, 10 and 20 min. Barricade gel (especially 2 % Barricade) significantly improved IJs viability after UV treatment, while all three NPs had adverse effects on IJ viability after UV radiation. Subsequently, two silica (SiO2 basic and advanced) and one titania (TiO2) based formulations were tested with Barricade (1 % and 2 %) and a water control. The titania-NH2 NPs provided the highest UV protection, and IJ viability and virulence were not reduced even after 20-min UV. Except TiO2, only 2 % Barricade at 10-min UV and SiO2 basic at 20-min UV had lower IJ mortality than the water control. Only TiO2 formulated IJs caused higher insect mortality and infection levels than aqueous IJs after UV treatment. The UV tolerance of TiO2 was further examined by assessing the number of nematodes invading the hosts. Consistent with virulence tests, the number of invading nematodes in titania-NH2 NPs did not decrease after UV radiation for 10 or 20 min compared with the no-UV control. The anti-UV capability of titania-NH2 NPs has promise as a tool to enhance biocontrol efficacy of EPNs under field conditions.


Asunto(s)
Rabdítidos , Rayos Ultravioleta , Animales , Dióxido de Silicio , Control Biológico de Vectores , Agua
4.
J Invertebr Pathol ; 194: 107806, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35944664

RESUMEN

Toxicity of the metabolites of two bacteria, Photorhabdus luminescens and Xenorhabdus bovienii, symbionts of entomopathogenic nematodes, were tested in the laboratory against the multicolored Asian lady beetle, Harmonia axyridis, the black pecan aphid, Melanocallis caryaefoliae, and the blackmargined aphid, Monellia caryella. Bacterial broth prepared from both P. luminescens and X. bovienii demonstrated high levels of toxicity equivalent to the pyrethroid insecticide bifenthrin and caused higher insect mortality than tryptic soy broth plus yeast extract (TSY) (blank control) against M. caryella; broth culture of P. luminescens was more effective than TSY against M. caryaefoliae. At the levels tested, the metabolites were not toxic to H. axyridis.


Asunto(s)
Áfidos , Carya , Escarabajos , Insecticidas , Photorhabdus , Piretrinas , Xenorhabdus , Animales
5.
J Invertebr Pathol ; 184: 107592, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33882276

RESUMEN

Entomopathogenic nematodes (EPNs), Steinernema riobrave and Heterorhabditis floridensis are under evaluation for eradication of the southern cattle fever tick, Rhipicephalus microplus infesting nilgai antelope, in South Texas. Cattle fever ticks are a significant threat to the U.S. livestock industry. Although they have been eradicated in the U.S. they frequently re-invade along the Texas-Mexico border. Remotely operated field sprayers have been developed to directly treat nilgai antelope with EPNs as they transit fence crossings and as they contact wetted foliage and soil from the surrounding area. EPNs are known to be susceptible to mortality from ultraviolet light (UV) and desiccation. A sprayable fire gel, Barricade®, has been reported to protect EPNs from UV and desiccation but has not been tested on animal hides. Barricade® at 1 and 2 percent rates was mixed with the water solution of S. riobrave and H. floridensis and applied to cowhides (to mimic direct treatment of nilgai) and filter paper and then these substrates were placed out of doors in 0, 30, 60 or 120 min of sunlight. Wax moth larvae, Galleria mellonella, were exposed to the cowhides and filter paper to determine efficacy of the EPNs. Efficacy of S. riobrave with 1 and 2% Barricade® gel applied to cowhides was significantly improved at 30 and 60 min as compared to the control. At 120 min mortality of the wax moth larvae was near zero for both the control and the treatments. Similar results were found with the filter paper test. In contrast, efficacy of H. floridensis with Barricade® applied to cowhides or filter paper was not significantly improved at 30, 60 or 120 min as compared to the water only control. Barricade® has the potential to improve the efficacy of S. riobrave and other EPNs by reducing mortality and desiccation, especially when used in the remotely operated sprayer developed for treatment of cattle fever tick infested nilgai.


Asunto(s)
Antílopes , Enfermedades de los Bovinos/prevención & control , Rabdítidos/fisiología , Rhipicephalus/fisiología , Control de Ácaros y Garrapatas/métodos , Animales , Bovinos , Texas
6.
J Invertebr Pathol ; 184: 107655, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34411606

RESUMEN

The pupal soil cell of the pecan weevil, Curculio caryae (Coleoptera: Curculionidae), was reported previously to exhibit antibiosis to an entomopathogenic fungus, Beauveria bassiana. The objectives of this study were to examine 1) if the antimicrobial effect occurs in other insects that form pupal cells, 2) whether the effect extends to plant pathogenic fungi, and 3) identify the source of antibiosis in pupal soil cells of C. caryae. Antibiosis of pupal cells against B. bassiana was confirmed in-vitro in three additional curculionids, Diaprepes abbreviatus, Conotrachelus nenuphar, and Pissodes nemorensis, all of which had fewer fungal colonies relative to controls. Pupal soil cells were found to suppress phytopathogenic fungi in-vitro, including suppression of Alternaria solani by D. abbreviatus pupal cell, and that of Monilinia fructicola by C. caryae. The detection of antibiosis of soil cells formed by surface-sterilized insects using sterile soil implies the antimicrobial effect stemmed from inside the insect. Further, a novel biotic mechanism was identified: a bacterium related to Serratia nematodiphila was isolated from C. caryae pupal soil cells and was found to be associated with antibiosis. The bacterial cultures with or without autoclave had similar effects but were not as potent as pupal soil cells for suppressing B. bassiana. Also, autoclaved soil cells and autoclaved bacterial culture suppressed M. fructicola but were not as inhibitory as non-autoclaved soil cells. This indicates that antibiosis may be due to bacterial metabolites, although other factors may also be involved. Our findings suggest potential to develop the antibiotic compounds as novel bio-fungicides to control plant diseases.


Asunto(s)
Antibiosis , Beauveria/efectos de los fármacos , Enfermedades de las Plantas/prevención & control , Serratia/fisiología , Microbiología del Suelo , Gorgojos/microbiología , Animales , Fungicidas Industriales/química , Pupa/crecimiento & desarrollo , Pupa/microbiología , Serratia/química , Especificidad de la Especie , Gorgojos/crecimiento & desarrollo
7.
J Nematol ; 532021.
Artículo en Inglés | MEDLINE | ID: mdl-34286284

RESUMEN

Soil pH affects the availability of nutrients, which impacts plant growth and development. Similarly, soil pH may also influence microorganisms in the soil, either beneficial or nonbeneficial. One such group of beneficial microorganisms is entomopathogenic nematodes (EPN), parasites of soil-inhabiting insects. Entomopathogenic nematodes have a number of attributes that make them good alternatives to chemical insecticides. The objective of this study was to investigate pH tolerance of 11 steinernematids and six heterorhabditids post exposure to different pH levels. Entomopathogenic nematode populations were exposed to varying pH levels (pH2 to pH11) made up from two different chemical solutions (ammonium-acetate and citrate-phosphate). Entomopathogenic nematode populations are expected to have varying tolerance to different pH levels. The highest infective juvenile survival was obtained from pH3 to pH10 in citrate-phosphate, where all populations displayed >50% survival. Steinernema carpocapsae populations had >90% survival at pH3 to pH11 in citrate-phosphate solutions. Overall, the steinernematids had a higher survival range in ammonium-acetate pH solutions compared with the heterorhabditids. Moreover, Steinernema spp., S. carpocapsae (ScCxrd, ScAll, and ScItalian) and S. riobrave showed consistently higher survival in both acidic and alkaline solutions, when compared to the other steinernematids, suggesting that they may be applied in both acidic and alkaline soils. These findings can be of use when selecting EPNs for biological control purposes in the two countries, respectively.

8.
J Nematol ; 532021.
Artículo en Inglés | MEDLINE | ID: mdl-34849484

RESUMEN

The sweetpotato whitefly, Bemisia tabaci Middle East-Asia Minor 1 (MEAM1), is a major insect pest on vegetable crops worldwide. Enormous economic losses result from direct and indirect plant damage caused by MEAM1. Biological control using entomopathogenic nematodes (EPN) may be an effective alternative strategy against MEAM1 because this pest has developed resistance to most insecticides. First, nine EPN species (Heterorhabditis bacteriophora, H. indica, H. georgiana, H. floridensis, Steinernema feltiae, S. carpocapsae, S. riobrave, S. glaseri, and S. rarum) were investigated for virulence to MEAM1 third instar nymphs on snap bean leaves under laboratory conditions. The mortality of MEAM1 nymphs was evaluated at 3 days post-inoculation (dpi). Compared to the water control, the application of the nine EPN species except S. glaseri resulted in significantly higher mortality of MEAM1 nymphs, such as H. bacteriophora (66.31%), H. floridensis (56.38%), S. carpocapsae (54.54%), and S. rarum (57.80%). Subsequently, the four virulent EPN species, H. bacteriophora, H. floridensis, S. carpocapsae, and S. rarum were evaluated further for virulence to MEAM1 nymphs on snap bean and tomato leaves. The mortality of MEAM1 nymphs was assessed at 3 dpi and 7 dpi. There were no significant differences in MEAM1 nymphal mortality between tomato and snap bean at either 3 dpi or 7 dpi. The mortality of MEAM1 nymphs caused by the application of H. floridensis (99.25%) was significantly higher than the other three EPN species and the water control at 7dpi. The results indicate that H. floridensis is a very promising biocontrol agent for B. tabaci management.

9.
J Invertebr Pathol ; 175: 107452, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32763230

RESUMEN

Environmental factors such as temperature and desiccation impact the survival and efficacy of entomopathogenic nematodes (EPNs). Most studies on environmental tolerance have focused on EPNs applied in aqueous suspension. Another approach for EPN application is via infected host cadavers. Emergence in host cadavers is also more representative of nematodes in natural populations. In prior studies, certain advantages in fitness have been observed with the cadaver application approach relative to aqueous application, yet the impact of environmental stress on these approaches requires investigation. In this study, we compared the effects of various temperatures (heat and cold) and desiccation intervals (48 and 72 hr) on the survival, virulence and reproductive capacity of Heterorhabditis bacteriophora and Steinernema glaseri when applied via cadaver versus aqueous suspension. In the heat tolerance bioassays, following exposure to 30 °C, 35 °C and 37. 5 °C, nematodes (from both species) in the cadaver treatments exhibited higher survival, and reproductive capacity compared with aqueous application. No survival was observed above 37.5 °C regardless of species or application approach. In cold tolerance, no differences were observed between the cadaver and aqueous treatments after a sequence of exposures from 10 °C to -2 °C. In desiccation assays, following exposure to 85% relative humidity for 2 or 3 days, nematodes (from both species) exhibited higher survival and reproduction in the cadaver treatment than in the aqueous treatment, whereas no differences were observed in virulence. This is the first study to find differential stress tolerance among nematodes emerged from infected host cadavers versus those applied in aqueous suspension. Our findings indicate additional advantages when using the cadaver approach for biocontrol applications, and suggest EPNs existing in natural populations may have broader environmental tolerance than those applied via aqueous suspension.


Asunto(s)
Mariposas Nocturnas/parasitología , Control Biológico de Vectores , Strongyloidea/fisiología , Animales , Cadáver , Ambiente , Larva/crecimiento & desarrollo , Larva/parasitología , Mariposas Nocturnas/crecimiento & desarrollo , Agua
10.
J Invertebr Pathol ; 164: 38-42, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31034842

RESUMEN

Inconsistency in entomopathogenic nematode (EPN) efficacy is still one of the biggest challenges for the wider adoption of EPNs as biocontrol agents. Previous studies demonstrated that extracts from EPN-infected hosts enhance dispersal and efficacy, two key factors in success of EPNs. Some active components in the insect host cadavers responsible for dispersal, ascarosides, have been identified as nematode pheromones. We hypothesized that pheromone extracts increase dispersal of EPN infective juveniles (IJs) leading to increased efficacy. First, we determined whether pheromone extracts improved IJ movement/dispersal in soil columns baited with Tenebrio molitor larvae. We found that pheromone extracts induced higher numbers of Steinernema carpocapsae and Steinernema feltiae IJs to move towards T. molitor larvae in the bottom of the column compared to IJs treated with infected cadaver macerate and water, positive and negative controls, respectively. Furthermore, the number of S. carpocapsae IJs that invaded T. molitor larvae was higher for the pheromone extract treatment than the controls. S. feltiae IJs that were pretreated with pheromone extracts and macerate (positive control) infected T. molitor at the same rate but invasion was superior to IJs that were treated with water. Consistent with the soil column tests, both S. carpocapsae and S. feltiae IJs treated with pheromone extracts performed better in killing larvae of two economically important insect larvae, pecan weevil, Curculio caryae, and black soldier fly, Hermetia illucens, in greenhouse tests compared to IJs treated with water. We demonstrated pheromone-mediated behavioral manipulation of a biological control agent to enhance pest control potential. Conceivably, nematodes can be exposed to efficacy-enhancing pheromones prior to field application.


Asunto(s)
Feromonas , Infecciones por Rhabditida/parasitología , Rabdítidos , Animales , Bioensayo , Agentes de Control Biológico , Dípteros/parasitología , Larva/parasitología , Mariposas Nocturnas/parasitología , Control Biológico de Vectores , Rabdítidos/patogenicidad , Suelo/parasitología , Gorgojos/parasitología
11.
J Invertebr Pathol ; 159: 141-144, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30336144

RESUMEN

Vertical dispersal and infectivity of the infective juveniles (IJs) of three entomopathogenic nematodes (EPNs), Steinernema carpocapsae, S. feltiae, and Heterorhabditis bacteriophora, were tested in the presence or absence of cadaver macerate of nematode-infected Galleria mellonella. Infected host macerate applied on the top of column surface induced higher numbers of IJs to move to the bottom of the column for all three species, indicating a dispersal-enhancing effect of host cadaver on IJs. Among the three EPNs, H. bacteriophora was the most responsive to host macerate, followed by S. feltiae, and S. carpocapsae was the least. Also, more IJs of H. bacteriophora invaded Tenebrio molitor hosts at the bottom of soil columns in the presence of host macerate compared with the treatment without cadaver macerate. These findings suggest enhanced dispersal and/or infectivity of all three EPNs may be leveraged toward superior biocontrol efficacy.


Asunto(s)
Interacciones Huésped-Parásitos/fisiología , Mariposas Nocturnas/parasitología , Nematodos/parasitología , Control Biológico de Vectores/métodos , Animales , Microbiología del Suelo
12.
J Invertebr Pathol ; 145: 1-8, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28322849

RESUMEN

Development of novel approaches for the control of fungal phytopathogens is desirable. In this study we hypothesized that the combination of commercial fungicides with certain enhancing agents could result in synergistic levels of control. Prior research has indicated that trans-cinnamic-acid (TCA), a metabolite of the bacteria Photorhabdus luminescens and metabolites of Xenorhabdus szentirmaii are particularly toxic to various phytpathogenic fungi when compared to metabolites of other Xenorhabdus or Photorhabdus spp. In this study we explored the efficacy of commercial fungicide interactions when combined with either TCA or X. szentirmaii. Fungicides (active ingredient) included Abound® (Azoxystrobin), Serenade® (Bacillus subtilis), Elast® (dodine), Regalia® (extract of Reynoutria sachalinensis), Prophyt® (potassium phosphite) and PropiMax® (propiconazole). In laboratory experiments, singly-applied or combined agents were assessed for fungicidal activity against four plant-pathogenic fungi, Monilinia fructicola, Rhizoctonia solani, Colletotrichum gloeosporioides and Fusarium oxysporum. Fungicidal activity was measured by the phytopathogen's growth on potato dextrose agar with and without fungicide. The interactions between fungicidal agents were determined as antagonistic, additive or synergistic. For suppression of M. fructicola, synergy was observed between TCA when combined with certain concentrations of Elast®, PropiMax®, Regalia®, Prophyte® or Serenade®, and for combinations of X. szentirmaii with Abound®. For suppression of R. solani, synergy was observed between TCA combined with Regalia® or Serenade®. Additionally, when TCA was combined with X. szentirmaii synergistic levels of suppression to M. fructicola were observed. Other combinations of TCA or X. szentirmaii with the fungicides or using alternate concentrations were either additive or occasionally antagonistic in nature. Our results indicate that TCA and X. szentirmaii can each act as strong synergists to enhance fungicidal efficacy. These results may be used to reduce negative environmental impacts of pesticide use while improving control of plant diseases. Additional research is needed to explore the diversity of the synergistic effects and confirm our observations under field conditions.


Asunto(s)
Cinamatos/farmacología , Fungicidas Industriales/farmacología , Control Biológico de Vectores/métodos , Enfermedades de las Plantas/prevención & control , Xenorhabdus/metabolismo , Hongos/efectos de los fármacos , Enfermedades de las Plantas/microbiología
13.
J Invertebr Pathol ; 135: 53-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26896698

RESUMEN

The success of parasites can be impacted by multi-trophic interactions. Tritrophic interactions have been observed in parasite-herbivore-host plant systems. Here we investigate aspects of multi-trophic interactions in a system involving an entomopathogenic nematode (EPN), its insect host, and host plant. Novel issues investigated include the impact of tritrophic interactions on nematode foraging behavior, the ability of EPNs to overcome negative tritrophic effects through genetic selection, and interactions with a fourth trophic level (nematode predators). We tested infectivity of the nematode, Steinernema riobrave, to corn earworm larvae (Helicoverpa zea) in three host plants, tobacco, eggplant and tomato. Tobacco reduced nematode virulence and reproduction relative to tomato and eggplant. However, successive selection (5 passages) overcame the deficiency; selected nematodes no longer exhibited reductions in phenotypic traits. Despite the loss in virulence and reproduction nematodes, first passage S. riobrave was more attracted to frass from insects fed tobacco than insects fed on other host plants. Therefore, we hypothesized the reduced virulence and reproduction in S. riobrave infecting tobacco fed insects would be based on a self-medicating tradeoff, such as deterring predation. We tested this hypothesis by assessing predatory success of the mite Sancassania polyphyllae and the springtail Sinella curviseta on nematodes reared on tobacco-fed larvae versus those fed on greater wax moth, Galleria mellonella, tomato fed larvae, or eggplant fed larvae. No advantage was observed in nematodes derived from tobacco fed larvae. In conclusion, our results indicated that insect-host plant diet has an important effect on nematode foraging, infectivity and reproduction. However, negative host plant effects, might be overcome through directed selection. We propose that host plant species should be considered when designing biocontrol programs using EPNs.


Asunto(s)
Interacciones Huésped-Parásitos/fisiología , Mariposas Nocturnas/parasitología , Nicotiana/parasitología , Rabdítidos/fisiología , Solanum lycopersicum/parasitología , Solanum melongena/parasitología , Adaptación Fisiológica , Análisis de Varianza , Animales , Solanum lycopersicum/fisiología , Mariposas Nocturnas/fisiología , Reproducción , Rabdítidos/patogenicidad , Pase Seriado , Solanum melongena/fisiología , Nicotiana/fisiología , Virulencia
14.
J Nematol ; 48(2): 126-33, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27418706

RESUMEN

Entomopathogenic nematode production in liquid fermentation still requires improvements to maximize efficiency, yield, and nematode quality. Therefore, this study was aimed at developing a more suitable liquid medium for mass production of Steinernema feltiae, by assessing the effects of nutrient concentration, thickeners (primarily agar), and agitation speed on infective juvenile (IJ) yield. Base medium (BM) contained yeast extract (2.3%), egg yolk (1.25%), NaCl (0.5%), and corn oil (4%). All media were inoculated with Xenorhabdus bovienii, and 2 d later, with 2-d-old S. feltiae juveniles. For the nutrient concentration experiment, we evaluated the base medium versus a modified base medium containing all the components, but with 3× concentrations of yeast extract (6.9%), egg yolk (3.75%), and corn oil (12%). The nematodes and bacteria were cultured in 150-ml Erlenmeyer flasks containing 50 ml of liquid medium at (25°C) and 180 rpm on a rotary shaker incubator. To assess the effect of thickeners, IJs were inoculated in BM with agar (0.2%), carrageen (0.2%), and carboxymethyl cellulose (0.2% and 0.5%). The addition of 3× more nutrients relative to the BM resulted in a significantly lower yield of nematodes. For agar and agitation speed experiments, five levels of agar in the BM (0%, 0.2%, 0.4%, 0.6%, and 0.8% agar) and two agitation speeds (180 and 280 rpm) were evaluated for production. Increasing agitation speed from 180 to 280 rpm and higher levels of agar in the medium (> 0.2%) significantly increased the yield of bacteria. At the lower agitation speed, media amended with 0.4% and 0.6% agar produced higher nematode yields compared to media without agar. Media with 0.2% and 0.8% agar resulted in intermediate levels of nematode production. At the higher agitation speed, media supplemented with 0.8% agar resulted in the lowest yield of nematodes when compared to the other media tested. Results indicated that increasing nutrient concentration levels was detrimental to nematode production. Also, media containing agar (0.4% and 0.6%) increased nematode yields when cultures were grown at low agitation speed. When IJs were used as the inoculum, 0.2% agar also enhanced recovery and nematode yield at the higher agitation speed.

15.
J Nematol ; 48(3): 170-176, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27765990

RESUMEN

The peachtree borer, Synanthedon exitiosa (Say 1823), is a major pest of stone fruit trees in North America. Current management relies upon preventative control using broad-spectrum chemical insecticides, primarily chlorpyrifos, applied in the late summer or early fall. However, due to missed applications, poor application timing, or other factors, high levels of S. exitiosa infestation may still occur and persist through the following spring. Curative treatments applied in the spring to established infestations would limit damage to the tree and prevent the next generation of S. exitiosa from emerging within the orchard. However, such curative measures for control of S. exitiosa do not exist. Our objective was to measure the efficacy of the entomopathogenic nematode, Steinernema carpocapsae, as a curative control for existing infestations of S. exitiosa. In peach orchards, spring applications of S. carpocapsae (obtained from a commercial source) were made to infested trees and compared with chlorpyrifos and a water-only control in 2014 and 2015. Additionally, types of spray equipment were compared: nematodes were applied via boom sprayer, handgun, or trunk sprayer. To control for effects of application method or nematode source, in vivo laboratory-grown S. carpocapsae, applied using a watering can, was also included. Treatment effects were assessed 39 d (2014) or 19 d (2015) later by measuring percentage of trees still infested, and also number of surviving S. exitiosa larvae per tree. Results indicated that S. carpocapsae provided significant curative control (e.g., >80% corrected control for the handgun application). In contrast, chlorpyrifos failed to reduce S. exitiosa infestations or number of surviving larvae. In most comparisons, no effect of nematode application method was detected; in one assessment, only the handgun and watering can methods reduced infestation. In conclusion, our study indicates that S. carpocapsae may be used as an effective curative measure for S. exitiosa infestations.

16.
J Invertebr Pathol ; 124: 114-6, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25510575

RESUMEN

Soil-dwelling insects have developed various mechanisms to defend against pathogen infection. The pecan weevil, Curculio caryae, spends two to three years in the soil inside an earthen cell. We hypothesized that the cell may possess antimicrobial properties. In a laboratory study, we tested the hypothesis using the fungus Beauveria bassiana as a model. B. bassiana is a common endemic pathogen of C. caryae. We compared the number of colony-forming-units on selective media when B. bassiana was exposed to autoclaved soil, non-autoclaved soil, or soil from a C. caryae pupal cell. Soil from C. caryae cells was suppressive to B. bassiana. To our knowledge this is the first report of antimicrobial properties associated with an insect soil cell. The findings expand our knowledge of host-pathogen relationships. Additional research is needed to determine the basis for the suppressive effects observed.


Asunto(s)
Beauveria/fisiología , Pupa/fisiología , Gorgojos/crecimiento & desarrollo , Animales , Antiinfecciosos/metabolismo , Resistencia a la Enfermedad , Pupa/microbiología , Suelo/química , Gorgojos/microbiología , Gorgojos/fisiología
17.
J Nematol ; 47(3): 184-9, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26527839

RESUMEN

Entomopathogenic nematodes (EPNs) can be highly effective biocontrol agents, but their efficacy can be reduced due to exposure to environmental stress such as from ultraviolet (UV) radiation. Our objectives were to 1) compare UV tolerance among a broad array of EPN species, and 2) investigate the relationship between reduced nematode viability (after exposure to UV) and virulence. Nematodes exposed to a UV radiation (254 nm) for 10 or 20 min were assessed separately for viability (survival) and virulence to Galleria mellonella. We compared 9 different EPN species and 15 strains: Heterorhabditis bacteriophora (Baine, fl11, Oswego, and Vs strains), H. floridensis (332), H. georgiana (Kesha), H. indica (HOM1), H. megidis (UK211), Steinernema carpocapsae (All, Cxrd, DD136, and Sal strains), S. feltiae (SN), S. rarum (17C&E), and S. riobrave (355). In viability assessments, steinernematids, particularly strains of S. carpocapsae, generally exhibited superior UV tolerance compared with the heterorhabditids. However, some heterorhabditids tended to be more tolerant than others, e.g., H. megidis and H. bacteriophora (Baine) were most susceptible and H. bacteriophora (Vs) was the only heterorhabditid that did not exhibit a significant effect after 10 min of exposure. All heterorhabditids experienced reduced viability after 20 min exposure though several S. carpocapsae strains did not. In total, after 10 or 20 min exposure, the viability of seven nematode strains did not differ from their non-UV exposed controls. In virulence assays, steinernematids (particularly S. carpocapsae strains) also tended to exhibit higher UV tolerance. However, in contrast to the viability measurements, all nematodes experienced a reduction in virulence relative to their controls. Correlation analysis revealed that viability among nematode strains is not necessarily related to virulence. In conclusion, our results indicate that the impact of UV varies substantially among EPNs, and viability alone is not a sufficient measure for potential impact on biocontrol efficacy as other characters such as virulence may be severely affected even when viability remains high.

18.
J Nematol ; 46(1): 27-34, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24643501

RESUMEN

The ability of entomopathogenic nematodes to tolerate environmental stress such as desiccating or freezing conditions, can contribute significantly to biocontrol efficacy. Thus, in selecting which nematode to use in a particular biocontrol program, it is important to be able to predict which strain or species to use in target areas where environmental stress is expected. Our objectives were to (i) compare inter- and intraspecific variation in freeze and desiccation tolerance among a broad array of entomopathogenic nematodes, and (ii) determine if freeze and desiccation tolerance are correlated. In laboratory studies we compared nematodes at two levels of relative humidity (RH) (97% and 85%) and exposure periods (24 and 48 h), and nematodes were exposed to freezing temperatures (-2°C) for 6 or 24 h. To assess interspecific variation, we compared ten species including seven that are of current or recent commercial interest: Heterorhabditis bacteriophora (VS), H. floridensis, H. georgiana, (Kesha), H. indica (HOM1), H. megidis (UK211), Steinernema carpocapsae (All), S. feltiae (SN), S. glaseri (VS), S. rarum (17C&E), and S. riobrave (355). To assess intraspecific variation we compared five strains of H. bacteriophora (Baine, Fl1-1, Hb, Oswego, and VS) and four strains of S. carpocapsae (All, Cxrd, DD136, and Sal), and S. riobrave (355, 38b, 7-12, and TP). S. carpocapsae exhibited the highest level of desiccation tolerance among species followed by S. feltiae and S. rarum; the heterorhabditid species exhibited the least desiccation tolerance and S. riobrave and S. glaseri were intermediate. No intraspecific variation was observed in desiccation tolerance; S. carpocapsae strains showed higher tolerance than all H. bacteriophora or S. riobrave strains yet there was no difference detected within species. In interspecies comparisons, poor freeze tolerance was observed in H. indica, and S. glaseri, S. rarum, and S. riobrave whereas H. georgiana and S. feltiae exhibited the highest freeze tolerance, particularly in the 24-h exposure period. Unlike desiccation tolerance, substantial intraspecies variation in freeze tolerance was observed among H. bacteriophora and S. riobrave strains, yet within species variation was not detected among S. carpocapsae strains. Correlation analysis did not detect a relationship between freezing and desiccation tolerance.

19.
J Nematol ; 46(1): 18-26, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24643472

RESUMEN

Under laboratory conditions, the biocontrol potential of Steinernema thermophilum was tested against eggs and larval stages of two important lepidopteran insect pests, Helicoverpa armigera and Spodoptera litura (polyphagous pests), as well as Galleria mellonella (used as a model host). In terms of host susceptibility of lepidopteran larvae to S. thermophilum, based on the LC50 36 hr after treatment, G. mellonella (LC50 = 16.28 IJ/larva) was found to be more susceptible than S. litura (LC50 = 85 IJ/larva), whereas neither host was found to be significantly different from H. armigera (LC50 = 54.68 IJ/larva). In addition to virulence to the larval stages, ovicidal activity up to 84% was observed at 200 IJ/50 and 100 eggs of H. armigera and S. litura, respectively. To our knowledge this is the first report of entomopathogenic nematode pathogenicity to lepidopteran eggs. Production of infective juvenile (IJ) nematodes/insect larva was also measured and found to be positively correlated with rate of IJ for H. armigera (r = 0.990), S. litura (r = 0.892), as well as G. mellonella (r = 0.834). Both Phase I and Phase II of symbiotic bacteria Xenorhabdus indica were tested separately against neonates of H. armigera and S. litura by feeding assays and found to be virulent to the target pests; phase variation did not affect the level of virulence. Thus S. thermophilum as well as the nematode's symbiotic bacteria applied separately have the potential to be developed as biocontrol agents for key lepidopteran pests.

20.
J Nematol ; 46(4): 336-45, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25580026

RESUMEN

Biological characteristics of two strains of the entomopathogenic nematode, Heterorhabditis floridensis (332 isolated in Florida and K22 isolated in Georgia) were described. The identity of the nematode's symbiotic bacteria was elucidated and found to be Photorhabdus luminescens subsp. luminescens. Beneficial traits pertinent to biocontrol (environmental tolerance and virulence) were characterized. The range of temperature tolerance in the H. floridensis strains was broad and showed a high level of heat tolerance. The H. floridensis strains caused higher mortality or infection in G. mellonella at 30°C and 35°C compared with S. riobrave (355), a strain widely known to be heat tolerant, and the H. floridensis strains were also capable of infecting at 17°C whereas S. riobrave (355) was not. However, at higher temperatures (37°C and 39°C), though H. floridensis readily infected G. mellonella, S. riobrave strains caused higher levels of mortality. Desiccation tolerance in H. floridensis was similar to Heterorhabditis indica (Hom1) and S. riobrave (355) and superior to S. feltiae (SN). H. bacteriophora (Oswego) and S. carpocapsae (All) exhibited higher desiccation tolerance than the H. floridensis strains. The virulence of H. floridensis to four insect pests (Aethina tumida, Conotrachelus nenuphar, Diaprepes abbreviatus, and Tenebrio molitor) was determined relative to seven other nematodes: H. bacteriophora (Oswego), H. indica (Hom1), S. carpocapsae (All), S. feltiae (SN), S. glaseri (4-8 and Vs strains), and S. riobrave (355). Virulence to A. tumida was similar among the H. floridensis strains and other nematodes except S. glaseri (Vs), S. feltiae, and S. riobrave failed to cause higher mortality than the control. Only H. bacteriophora, H. indica, S. feltiae, S. riobrave, and S. glaseri (4-8) caused higher mortality than the control in C. nenuphar. All nematodes were pathogenic to D. abbreviatus though S. glaseri (4-8) and S. riobrave (355) were the most virulent. S. carpocapsae was the most virulent to T. molitor. In summary, the H. floridensis strains possess a wide niche breadth in temperature tolerance and have virulence and desiccation levels that are similar to a number of other entomopathogenic nematodes. The strains may be useful for biocontrol purposes in environments where temperature extremes occur within short durations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA