Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bull Exp Biol Med ; 170(2): 246-250, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33263850

RESUMEN

We studied the effects of lithium carbonate on the cell cycle, apoptosis, and autophagy in hepatocellular carcinoma-29 cells (HCC-29) in vitro. Flow cytofluorometry analysis revealed accumulation of G2/M-phase HCC-29 cells and increase in the number of apoptotic cells in 48 h after administration of 5 mM lithium carbonate. Induction of autophagy in HCC-29 cells was detected by transmission electron microscopy and immunofluorescence staining. Thus, lithium carbonate produces an antitumor effect by arresting cell cycle in the G2/M-phase and induction of apoptosis and autophagy in HCC-29 cells, which confirms the lithium potential as a promising drug for the treatment of hepatocellular carcinoma.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Carcinoma Hepatocelular/tratamiento farmacológico , Ciclo Celular/efectos de los fármacos , Carbonato de Litio/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Antineoplásicos/farmacología , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Colorantes Fluorescentes/farmacología , Humanos , Técnicas In Vitro , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Transducción de Señal
2.
Vavilovskii Zhurnal Genet Selektsii ; 27(2): 93-98, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37063515

RESUMEN

Under many kinds of stress, eukaryotic cells rapidly decrease the overall translation level of the majority of mRNAs. However, some molecular mechanisms of protein synthesis inhibition like phosphorylation of eukaryotic elongation factor 2 (eEF2), which are known to be functional in animals and yeast, are not implemented in plants. We suggest that there is an alternative mechanism for the inhibition of protein synthesis in plant cells and possibly, in other eukaryotes, which is based on the discrete fragmentation of 18S rRNA molecules within small ribosomal subunits. We identified four stress-induced small RNAs, which are 5'- and 3'-terminal fragments of 18S rRNA. In the present work, we studied the induction of 18S rRNA discrete fragmentation and phosphorylation of the α-subunit of eukaryotic initiation factor 2 (eIF2α) in germinated wheat embryos in the presence of glyphosate, which imitates the condition of amino acid starvation. Using northern and western blotting, we have shown that stress-induced 18S rRNA fragments started to accumulate in wheat embryos at glyphosate concentrations that did not evoke eIF2α phosphorylation. It was also found that cleavage of 18S rRNA near the 5'-terminus began much earlier than eIF2α phosphorylation, which became noticeable only at higher concentration (500 µM) of glyphosate. This result suggests that discrete fragmentation of 18S rRNA may constitute a regulatory mechanism of mRNA translation in response to stress and may occur in plant cells in parallel with and independently of eIF2α phosphorylation. The identified small 5'- and 3'-terminal fragments of 18S rRNA that accumulate during various stresses may serve as stress resistance markers in the breeding of economically important plant crops.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA