Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chem Biodivers ; 20(10): e202300714, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37650658

RESUMEN

In the present work, a bionanocomposite for plant crop protection was prepared by non-toxic biocompatible & biodegradable nanomaterials (Cellulose & TiO2 ) to utilize its synergistic effects against antimicrobial pathogens. The commercially available microcrystalline cellulose has been reduced to a nanometric scale regime using acid hydrolysis, while the standard TiO2 nano-powder of particle size ~20 nm has been used to prepare their nanocomposite (NC). The antibacterial studies via agar well diffusion method demonstrated that after 72 h of incubation, parent nanomaterials Ncell and TiO2 were not showing any activity against phytopathogens X. campestris pv. campestris, and Clavibacter while the nanocomposite's NC's were still effective depicting both bacteriostatic and bactericidal actions. However, the bacterial growth of biocontrol P. fluorescence was not affected by Ncell, TiO2 NPs and NC after 72 h of incubation. The antifungal testing results via poison food agar assay method suggest that the nanocomposite, along with Ncell and TiO2 NPs, exhibited strong inhibition of fungal growth of Phytophthora Spp at 0.125 mg/ml concentration while for F. graminearum, similar effect was observed at 0.25 mg/ml concentration. The nanocomposite has proved its potential by exhibiting longer & stronger synergistic effects against plant pathogens as a good antimicrobial agent for protection of agricultural crops.

2.
Indian J Crit Care Med ; 25(8): 896-905, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34733031

RESUMEN

Background: The aim was to investigate the efficacy of prone positioning (PP) in the management of coronavirus disease-2019 (COVID-19) pneumonia in various setups, with various modes of oxygen therapy and its optimal duration. Materials and methods: A systematic literature search was conducted from inception until May 15, 2021. Patients with a validated diagnosis of COVID-19 and receiving PP were included. Various factors, including intensive care unit (ICU) or non-ICU setup, mode of oxygen therapy, outcome, duration of proning, and limitations, were noted. Results: We retrieved 36 articles with a total of 1,385 patients for qualitative analysis. Out of 36 articles, there were 17 original articles, 09 case series, and 10 case reports. Out of 1,385 participants, 78.9% (n = 1,093) and 21.0% (n = 292) of patients were managed in ICU and non-ICU setup, respectively. Awake PP with high flow nasal cannula (HFNC) was found to be a promising technique; however, the result was inconclusive with helmet continuous positive airway pressure (CPAP). No study has evaluated the optimal duration of awake PP and the associated long-term outcomes. Conclusion: We encourage the use of early awake self-proning in the management of COVID19 disease. However, the evidence in terms of its use in non-ICU setup, the optimal duration of PP, and various oxygenation devices are insufficient, thereby mandating further well-designed multicentric studies to evaluate its efficacy as an adjunct in the management of COVID-19 pneumonia in context to the aforementioned factor. How to cite this article: Chilkoti GT, Mohta M, Saxena AK, Ahmad Z, Sharma CS. Awake Prone Positioning in the Management of COVID-19 Pneumonia: A Systematic Review. Indian J Crit Care Med 2021;25(8):896-905.

3.
Arch Virol ; 163(9): 2359-2368, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29736673

RESUMEN

Canine parvovirus (CPV) is the leading viral cause of enteritis in dogs and occurs mainly in 6- to 8-week-old pups. Rapid diagnosis of CPV under field conditions is now possible due to commercially available immunochromatographic (IC) assays. However, these commercial kits are somewhat expensive because they utilize a minimum of two monoclonal antibodies (mAbs) targeting different epitopes as capture and detector antibodies. Using only a single mAb for both capture and detection purpose may reduce the sensitivity of the assay. In the present study, efforts were made to develop an economical assay that can be utilized for diagnosis of CPV under Indian conditions with a high level of confidence. Rabbit polyclonal antibodies (pAbs) generated against recombinant truncated VP2 proteins of CPV were used as capture antibodies because they can be produced economically, while a commercial anti-CPV mAb was used as the detector antibody. The detection limit of the test strip was 6.6×105 TCID50/ml, and it specifically detected CPV-2, CPV-2a and CPV-2b while displaying no cross-reactivity with other common canine enteric pathogens. The relative sensitivity/specificity of pAb based strip test was 71%/92% and 71%/100% in relation to the hemagglutination test and a commercial IC kit, respectively, with substantial agreement. In addition, two commercially available mAbs targeting different epitopes were also used for development of another IC assay, which showed sensitivity, and specificity of 82%/87% and 90%/98% in relation to the hemagglutination test and commercial kit. Hence, the present strip test based on a combination of mAb and pAb provides an acceptable alternative for onsite and cost-effective diagnosis of CPV infection.


Asunto(s)
Enfermedades de los Perros/virología , Oro/química , Inmunoensayo/métodos , Nanopartículas del Metal/química , Infecciones por Parvoviridae/diagnóstico , Parvovirus Canino/aislamiento & purificación , Animales , Anticuerpos Monoclonales/análisis , Anticuerpos Antivirales/sangre , Enfermedades de los Perros/sangre , Enfermedades de los Perros/diagnóstico , Perros , Inmunoensayo/instrumentación , Masculino , Infecciones por Parvoviridae/sangre , Infecciones por Parvoviridae/virología , Parvovirus Canino/genética , Parvovirus Canino/inmunología , Conejos , Sensibilidad y Especificidad
4.
Int J Neurosci ; 128(11): 1007-1021, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29607689

RESUMEN

Objective: The aim of this study was: (1) to evaluate the neuroprotective effect of resveratrol and curcumin on nicotinamide adenine dinucleotide phosphate diaphorase activity in neuronal cell in subregions of mice brain, (2) to evaluate the effects on antioxidant status and (3) to evaluate the protective effects of phytochemicals on learning and memory following fluoride exposure. Method: Young mice (one month old, body weight (BW) 30 ± 5 mg) were provided with 120 ppm sodium fluoride dissolved in drinking water. They were given curcumin (30 mg/kg BW) or resveratrol (30 mg/kg BW) orally once in a day up to 30 days. Effects of resveratrol and curcumin on spatial learning and memory were studied using Morris water maze and classic maze test. Effects on brain antioxidants' (lactose dehydrogenase (LDH), malondialdehyde and reactive oxygen species) status were also studied in vitro. Histochemistry was done to assess the effect of treatments on nitric oxide neurotransmitter. Result: Our study showed that in fluoride-treated animals, the number of nicotinamide adenine dinucleotide phosphate diaphorase positive neurons, intracellular Ca2+, reactive oxygen species level, LDH and malondialdehyde concentration increased significantly. Interestingly, after treatment with curcumin or resveratrol, a significant decrease in the number of nicotinamide adenine dinucleotide phosphate diaphorase positive neurons and antioxidant status was observed. This decrease was more considerable in resveratrol-treated group. Conclusion: Our study indicates that both antioxidants, curcumin and resveratrol, are useful in reducing neurodegeneration in selective areas of cornus ammonis 1 (CA1), CA3, dentate gyrus (DG) and the cortex of mice brain and in recuperating the loss of memory and learning caused due to fluoride exposure.


Asunto(s)
Corteza Cerebral/metabolismo , Curcumina/administración & dosificación , Hipocampo/metabolismo , Recuerdo Mental/fisiología , Enfermedades Neurodegenerativas/metabolismo , Resveratrol/administración & dosificación , Fluoruro de Sodio/toxicidad , Animales , Antiinflamatorios no Esteroideos/administración & dosificación , Antioxidantes/administración & dosificación , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/patología , Hipocampo/efectos de los fármacos , Hipocampo/patología , Masculino , Recuerdo Mental/efectos de los fármacos , Ratones , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/patología , Especies Reactivas de Oxígeno/metabolismo
5.
Biologicals ; 49: 51-56, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28689674

RESUMEN

Canine parvoviral enteritis is a highly contagious viral illness caused by canine parvovirus-2 (CPV-2) which affects puppies of mainly 6-20 weeks of age. Vaccination is pivotal in preventing and controlling CPV-2 infection. Determination of antibody status is a critical determinant for successful vaccination. The hemagglutination inhibition (HI) test is 'gold standard' test for quantification of antibodies specific to CPV-2, although the execution of this test is not feasible under field conditions. The present study was undertaken to develop a point of care testing to determine immune status prior to CPV-2 vaccination or to detect seroconversion in immunized dogs by latex agglutination test (LAT) using recombinant antigen. Truncated portion of VP2 protein (tVP2) of CPV-2 was selected on the basis of antigenic indices, overexpressed the recombinant protein in E. coli system and was subsequently used in development of LAT. A total of 59 serum samples obtained from vaccinated (n = 54) and healthy unvaccinated (n = 5) dogs were tested. The positivity was observed in 85% (46/54) of these dogs with varying agglutination pattern. The overall sensitivity and specificity of latex agglutination test in comparison to HI test was recorded as 90% and 88% respectively with an agreement value of 90% (CI = 95%).


Asunto(s)
Enfermedades de los Perros , Infecciones por Parvoviridae , Parvovirus Canino/inmunología , Vacunación , Proteínas Virales/farmacología , Vacunas Virales/farmacología , Animales , Enfermedades de los Perros/inmunología , Enfermedades de los Perros/prevención & control , Perros , Pruebas de Fijación de Látex/métodos , Infecciones por Parvoviridae/inmunología , Infecciones por Parvoviridae/prevención & control , Infecciones por Parvoviridae/veterinaria , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/farmacología , Proteínas Virales/inmunología , Vacunas Virales/inmunología
7.
Int J Biol Macromol ; 277(Pt 2): 134228, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39074706

RESUMEN

Bacterial nanocellulose was produced here using static, static intermittent-fed batch (SIFB) and rotary disc bioreactor (RDB) mode. Economical black tea broth media with symbiotic consortia of bacteria and yeast (SCOBY) was used towards feasible BNC production (instead of commercial NCIM 2526 strain and conventional HS media). The physicochemical characterization of BNC produced in all three modes via FE-SEM, ATR-FTIR, XRD and TGA results showed a highly porous morphology, mostly Iα form, good crystallinity and thermal stability, respectively. BNC crystallinity lies in the range of 68 % (RDB) to 79.4 % (static and SIFB). Water retention value (86 to 93 %) and moisture content (85 to 93 %) are high for BNC produced in all three modes. Commendable difference in the BNC yield, sugar consumption, conversion yield and residual sugar was observed using different methods. Highest BNC yield 29.4 ± 0.66 gL-1 was obtained under SIFB method as compared to static mode (13.6 ± 0.32 g L-1). Under RDB, a negligible amount of BNC i.e., 1.0 ± 0.2 g L-1 was produced. SCOBY with BTB medium was found unsuitable for BNC production under RDB and needs further investigation. Thus, this comparative study offers a way to produce a commendable amount of low-priced BNC for various techno-industrial usage.

8.
Life (Basel) ; 13(11)2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-38004336

RESUMEN

Blood clot formation in blood vessels (thrombosis) is a major cause of life-threatening cardiovascular diseases. These clots are formed by αA-, ßB-, and ϒ-peptide chains of fibrinogen joined together by isopeptide bonds with the help of blood coagulation factor XIIIa. These clot structures are altered by various factors such as thrombin, platelets, transglutaminase, DNA, histones, and red blood cells. Various factors are used to dissolve the blood clot, such as anticoagulant agents, antiplatelets drugs, fibrinolytic enzymes, and surgical operations. Fibrinolytic enzymes are produced by microorganisms (bacteria, fungi, etc.): streptokinase of Streptococcus hemolyticus, nattokinase of Bacillus subtilis YF 38, bafibrinase of Bacillus sp. AS-S20-I, longolytin of Arthrobotrys longa, versiase of Aspergillus versicolor ZLH-1, etc. They act as a thrombolytic agent by either enhancing the production of plasminogen activators (tissue or urokinase types), which convert inactive plasminogen to active plasmin, or acting as plasmin-like proteins themselves, forming fibrin degradation products which cause normal blood flow again in blood vessels. Fibrinolytic enzymes may be classified in two groups, as serine proteases and metalloproteases, based on their catalytic properties, consisting of a catalytic triad responsible for their fibrinolytic activity having different physiochemical properties (such as molecular weight, pH, and temperature). The analysis of fibrinolysis helps to detect hyperfibrinolysis (menorrhagia, renal failure, etc.) and hypofibrinolysis (diabetes, obesity, etc.) with the help of various fibrinolytic assays such as a fibrin plate assay, fibrin microplate assay, the viscoelastic method, etc. These fibrinolytic activities serve as a key aspect in the recognition of numerous cardiovascular diseases and can be easily produced on a large scale with a short generation time by microbes and are less expensive.

9.
Int J Biol Macromol ; 253(Pt 8): 127602, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37875188

RESUMEN

The vastly expanding global population raised the demand for profuse food grain production. For food security in India, high yield and nutritional quality of grain crops, both are essential. Zinc is a crucial micronutrient generally deficient in food grains grown in India, reflecting their deteriorating nutritional quality. To address these issues, in the present study, a novel tri-component nanoparticle of chitosan­zinc-salicylic acid (CS-Zn-SA NPs) has been synthesized by ionotropic gelation method. The average size of synthesized CS-Zn-SA NPs was recorded 13.5 nm by dynamic light scattering (DLS) spectroscopy. The presence of chitosan, zinc and salicylic acid and crosslinking among these components in synthesized nanoparticles has been demonstrated by Fourier transforms infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). Further, synthesized CS-Zn-SA NPs at various concentrations (50-200 ppm) were evaluated for seed germination via seed priming, yield, grain zinc content and defence enzyme activity through the foliar application. CS-Zn-SA NPs revealed significant seed germination activities, 19.8 % higher grain yield, 45.5 % increased grain zinc content and manyfold defence enzyme activities than the control. The obtained results exposed the potential of CS-Zn-SA NPs as a stimulant for effective seedling development, higher yield, a virtuous micronutrient fortifying agent and defence enzyme promoter.


Asunto(s)
Quitosano , Nanopartículas , Zinc/química , Ácido Salicílico/farmacología , Quitosano/química , Nanopartículas/química , Grano Comestible/química , Micronutrientes/análisis
10.
BMJ Open Qual ; 12(Suppl 3)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37863508

RESUMEN

INTRODUCTION: Ensuring quality of care in Low and Middle Income countries (LMICs) is challenging. Despite the implementation of various quality improvement (QI) initiatives in public and private sectors, the sustenance of improvements continues to be a major challenge. A team of healthcare professionals in India developed a digital community of practice (dCoP) focusing on QI which now has global footprints. METHODOLOGY: The dCoP was conceptualised as a multitiered structure and is operational online at www.nqocncop.org from August 2020 onwards. The platform hosts various activities related to the quality of care, including the development of new products, and involves different cadres of healthcare professionals from primary to tertiary care settings. The platform uses tracking indicators, including the cost of sustaining the dCoP to monitor the performance of the dCoP. RESULT: Since its launch in 2020, dCoP has conducted over 130 activities using 13 tools with 25 940 registration and 13 681 participants. From April 2021, it has expanded to countries across the South-East Asia region and currently has participants from 53 countries across five continents. It has developed 20 products in four thematic areas for a targeted audience. dCoP is supporting mentoring of healthcare professionals from five countries in the South-East Asia region in their improvement journey. Acquiring new knowledge and improvement in their daily clinical practice has been reported by 93% and 80% of participants, respectively. The dCoP and its partners have facilitated the publication of nearly 40 articles in international journals. CONCLUSION: This dCoP platform has become a repository of knowledge for healthcare professionals in the South-East Asia region. The current paper summarises the journey of this innovative dCoP in an LMIC setting for a wider global audience.


Asunto(s)
COVID-19 , Mejoramiento de la Calidad , Humanos , Pandemias , Personal de Salud , Asia Oriental
11.
Indian J Crit Care Med ; 16(4): 238-40, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23559738

RESUMEN

We present a rare case in which a young girl ingested a solution of a hair-removing soap. The ingestion resulted in profound hypokalemia and severe acidosis leading to flaccid paralysis, respiratory arrest and ventricular arrhythmias. Ultimately the patient made complete recovery. The soapwas found to contain barium sulfide. The degree of paralysis and acidosis appeared to be directly related to serum potassium levels.

12.
Front Microbiol ; 13: 882902, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35547122

RESUMEN

Microbial keratinases exhibit a momentous role in converting keratin biowastes into exceedingly valuable protein supplements. This study reports a novel, highly stable keratinase from Bacillus pacificus RSA27 for the production of pure peptides rich in essential amino acids from chicken feathers. Purified keratinase showed a specific activity of 38.73 U/mg, 2.58-fold purification, and molecular weight of 36 kDa. Kinetic studies using a chicken feather as substrate report K m and V max values of 5.69 mg/ml and 142.40 µg/ml/min, respectively, suggesting significant enzyme-substrate affinity/biocatalysis. Identification and in silico structural-functional analysis of keratinase discovered the presence of distinct amino acid residues and their positions. Besides, keratinase possesses a high-affinity calcium-binding site (Asp128, Leu162, Asn164, Ile166, and Val168) and a catalytic triad of Asp119, His151, and Ser308, known attributes of serine protease (subtilisin family). Furthermore, a scale-up to 5 L fermenter revealed complete feather hydrolysis (94.5%) within 24 h with high activity (789 U/ml) and total amino acid of 153.97 µmol/ml. Finally, cytotoxicity evaluation of protein hydrolysate resulted in negligible cytotoxic effects (1.02%) on the mammalian hepatoblastoma cell line, signifying its potential biotechnological applications.

13.
Bioengineering (Basel) ; 9(12)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36550933

RESUMEN

Bone tissue engineering (BTE) is a promising alternative to repair bone defects using biomaterial scaffolds, cells, and growth factors to attain satisfactory outcomes. This review targets the fabrication of bone scaffolds, such as the conventional and electrohydrodynamic techniques, for the treatment of bone defects as an alternative to autograft, allograft, and xenograft sources. Additionally, the modern approaches to fabricating bone constructs by additive manufacturing, injection molding, microsphere-based sintering, and 4D printing techniques, providing a favorable environment for bone regeneration, function, and viability, are thoroughly discussed. The polymers used, fabrication methods, advantages, and limitations in bone tissue engineering application are also emphasized. This review also provides a future outlook regarding the potential of BTE as well as its possibilities in clinical trials.

14.
Expert Rev Vaccines ; 21(8): 1071-1086, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35604776

RESUMEN

INTRODUCTION: Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emerged as one of the biggest global health issues. Spike protein (S) and nucleoprotein (N), the major immunogenic components of SARS-CoV-2, have been shown to be involved in the attachment and replication of the virus inside the host cell. AREAS COVERED: Several investigations have shown that the SARS-CoV-2 nucleoprotein can elicit a cell-mediated immune response capable of regulating viral replication and lowering viral burden. However, the development of an effective vaccine that can stop the transmission of SARS-CoV-2 remains a matter of concern. Literature was retrieved using the keywords COVID-19 vaccine, role of nucleoprotein as vaccine candidate, spike protein, nucleoprotein immune responses against SARS-CoV-2, and chimera vaccine in PubMed, Google Scholar, and Google. EXPERT OPINION: We have focussed on the use of chimera protein, consisting of N and S-1 protein components of SARS-CoV-2, as a potential vaccine candidate. This may act as a polyvalent mixed recombinant protein vaccine to elicit a strong T and B cell immune response, which will be capable of neutralizing the wild and mutated variants of SARS-CoV-2, and also restricting its attachment, replication, and budding in the host cell.


Asunto(s)
COVID-19 , Proteínas Virales de Fusión , Vacunas Virales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Nucleoproteínas , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética
15.
J Biomater Sci Polym Ed ; 32(2): 166-188, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32905737

RESUMEN

Ternary nano-biocomposite films of bacterial cellulose-chitosan-gelatin (BC-C-G) were fabricated by immersing the BC pellicles into chitosan and gelatin mixture and subsequently freeze-drying. Scanning electron microscopy (SEM) images of the nano-biocomposite films revealed the presence of interconnected pores, with fibre diameter 20-150 nm. The composite films have a porosity of 95.3%, and showed good hydrophilicity with swelling ratio of 19 ± 1.8 and in vitro degradability. X-ray diffraction, attenuated total reflectance Fourier transform infrared spectroscopy, and thermogravimetric (TG) analysis results showed some interactions among the molecules of BC, gelatin, and chitosan within the film. The composite film offered good matrix for adhesion and proliferation of L929 fibroblasts cells as indicated by the cell attachment study, FE-SEM of cell-film constructs and cytocompatibility assay. Thus, the nano-biocomposite films of BC-C-G could be of paramount importance as tissue engineering scaffold. The "all-natural" ternary polymer composite films of BC-C-G have not been evaluated before for biomedical applications.


Asunto(s)
Quitosano , Gelatina , Celulosa , Espectroscopía Infrarroja por Transformada de Fourier , Ingeniería de Tejidos , Andamios del Tejido , Difracción de Rayos X
16.
PeerJ ; 9: e11570, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34141495

RESUMEN

Microbial fibrinolytic proteases are therapeutic enzymes responsible to ameliorate thrombosis, a fatal cardiac-disorder which effectuates due to excessive fibrin accumulation in blood vessels. Inadequacies such as low fibrin specificity, lethal after-effects and short life-span of available fibrinolytic enzymes stimulates an intensive hunt for novel, efficient and safe substitutes. Therefore, we herewith suggest a novel and potent fibrinolytic enzyme RFEA1 from Bacillus cereus RSA1 (MK288105). Although, attributes such as in-vitro purification, characterization and thrombolytic potential of RFEA1 were successfully accomplished in our previous study. However, it is known that structure-function traits and mode of action significantly aid to commercialization of an enzyme. Also, predicting structural model of a protein from its amino acid sequence is challenging in computational biology owing to intricacy of energy functions and inspection of vast conformational space. Our present study thus reports In-silico structural-functional analysis of RFEA1. Sequence based modelling approaches such as-Iterative threading ASSEmbly Refinement (I-TASSER), SWISS-MODEL, RaptorX and Protein Homology/analogY Recognition Engine V 2.0 (Phyre2) were employed to model three-dimensional structure of RFEA1 and the modelled RFEA1 was validated by structural analysis and verification server (SAVES v6.0). The modelled crystal structure revealed the presence of high affinity Ca1 binding site, associated with hydrogen bonds at Asp147, Leu181, Ile185 and Val187residues. RFEA1 is structurally analogous to Subtilisin E from Bacillus subtilis 168. Molecular docking analysis using PATCH DOCK and FIRE DOCK servers was performed to understand the interaction of RFEA1 with substrate fibrin. Strong RFEA1-fibrin interaction was observed with high binding affinity (-21.36 kcal/mol), indicating significant fibrinolytic activity and specificity of enzyme RFEA1. Overall, the computational research suggests that RFEA1 is a subtilisin-like serine endopeptidase with proteolytic potential, involved in thrombus hydrolysis.

17.
Pharmaceutics ; 13(11)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34834294

RESUMEN

Cardiac disorders such as acute myocardial infarction, embolism and stroke are primarily attributed to excessive fibrin accumulation in the blood vessels, usually consequential in thrombosis. Numerous methodologies including the use of anti-coagulants, anti-platelet drugs, surgical operations and fibrinolytic enzymes are employed for the dissolution of fibrin clots and hence ameliorate thrombosis. Microbial fibrinolytic enzymes have attracted much more attention in the management of cardiovascular disorders than typical anti-thrombotic strategies because of the undesirable after-effects and high expense of the latter. Fibrinolytic enzymes such as plasminogen activators and plasmin-like proteins hydrolyse thrombi with high efficacy with no significant after-effects and can be cost effectively produced on a large scale with a short generation time. However, the hunt for novel fibrinolytic enzymes necessitates complex purification stages, physiochemical and structural-functional attributes, which provide an insight into their mechanism of action. Besides, strain improvement and molecular technologies such as cloning, overexpression and the construction of genetically modified strains for the enhanced production of fibrinolytic enzymes significantly improve their thrombolytic potential. In addition, the unconventional applicability of some fibrinolytic enzymes paves their way for protein hydrolysis in addition to fibrin/thrombi, blood pressure regulation, anti-microbials, detergent additives for blood stain removal, preventing dental caries, anti-inflammatory and mucolytic expectorant agents. Therefore, this review article encompasses the production, biochemical/structure-function properties, thrombolytic potential and other surplus applications of microbial fibrinolytic enzymes.

18.
Mater Sci Eng C Mater Biol Appl ; 119: 111588, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33321633

RESUMEN

Bone injuries and fractures generally take a long period to heal itself. To address this problem, bone tissue engineering (BTE) has gained significant research impetus. Among the several techniques used for scaffold fabrication, electrospinning ought to be the most promising technique for the development of the nanostructured scaffolds. The present study was carried out to fabricate an electrospun nanocomposite scaffold for BTE by using gelatin, polycaprolactone (PCL), and nanohydroxyapatite (nHAp). To prepare Gelatin-PCL-nHAp nanocomposite scaffold: Gelatin-PCL blend was electrospun and then treated with nHAp (1 wt%) for different time periods. The fabricated nanocomposite scaffold was analysed by field emission scanning electron microscopy (FESEM) to determine the fiber diameter and evaluate the fiber morphology. The Gelatin-PCL-nHAp nanocomposite scaffold-20 min exhibited the average fiber diameter of 615±269 nm and average pore size 4.7±1.04 µm, and also revealed the presence of nHAp particles over the Gelatin-PCL scaffold surface. Further, X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy and thermogravimetric (TG) analysis also indicated the deposition of nHAp over the Gelatin-PCL scaffold surface. MTT assay and DNA quantification showed good viability and significant proliferation of human osteoblasts on Gelatin-PCL-nHAp nanocomposite scaffold. Moreover, cell-scaffold constructs illustrated efficient cellular attachment and adequately spread cells, and it also depicts characteristic polygonal morphology of osteoblasts over the Gelatin-PCL-nHAp nanocomposite scaffold. Thus, the results of in-vitro analysis of electrospun nanocomposite scaffold suggest that the Gelatin-PCL-nHAp scaffold can be a potential candidate for BTE applications.


Asunto(s)
Nanocompuestos , Ingeniería de Tejidos , Gelatina , Humanos , Poliésteres , Andamios del Tejido
19.
Int J Biol Macromol ; 145: 914-925, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31669468

RESUMEN

This study explores the modification of bacterial nanocellulose (BNC), produced in fermented tea medium with bio-extracts from herbal plants, to produce entirely natural antibacterial nanocellulose films. The antibacterial property was imparted by impregnating the synthesized BNC into bio-extracts of Terminalia arjuna (arjuna), Azadirachta indica (neem), Withania somnifera (ashwagandha), Tinospora cordifolia (giloy), and Murraya koenigii (curry leaves). FE-SEM analysis of modified BNC films revealed the presence of cloudy layer of bio-extracts over the BNC nanofibrous network. The modified BNC production was confirmed by ATR-FTIR. The modified BNC showed tremendous antibacterial activity against Escherichia coli (E. coli) and Aerococcus viridians (A. viridans). T. arjuna modified BNC showed the highest antibacterial activity against E. coli and A. viridans with inhibition zone of 27.08 mm and 26.34 mm, respectively, while M. koeniggi modified BNC showed the lowest antibacterial activity for both E. coli and A. viridans with inhibition zone of 14 mm and 14.2 mm, respectively. The water retention, moisture content and porosity values reflect highly hydrophilic nature of BNC films and their well suitability for varied biomedical applications like antibacterial wound dressings, herbal biomasks, scaffoldings, etc. The modification of BNC films with the bio-extracts used in this study has not been reported previously.


Asunto(s)
Antibacterianos/química , Factores Biológicos/química , Celulosa/química , Azadirachta/química , Vendajes , Factores Biológicos/farmacología , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana/métodos , Murraya/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Withania/química
20.
Indian J Anaesth ; 64(8): 704-709, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32934405

RESUMEN

BACKGROUND AND AIMS: Various methods have been used to check vocal cord movements as a routine before awakening the patient at the end of thyroidectomy to rule out recurrent laryngeal nerve (RLN) palsy; out of which, fibreoptic-assisted visualisation via laryngeal mask airway (LMA) being the most desirable. METHODS: Thirty patients of either sex, aged 18-65 years, American Society of Anaesthesiologists (ASA) grade I/II, scheduled for thyroidectomy under general anaesthesia (GA) were included and were randomised to receive either fibreoptic assisted (FB) or LMA CTrach-assisted (CT) visualisation of laryngeal structures at the end of thyroidectomy. The primary outcome was grade of view of laryngeal structures and secondary outcomes were time taken to achieve optimal view of laryngeal structures, ease of visualisation, hemodynamic parameters, and complications. RESULTS: In the fibreoptic group, we obtained comparable optimal laryngeal view i.e., grade 1 and 2 in all (100%) patients in comparison to 14 (93.33%) in LMA CTrach group. The "time taken to achieve the optimal view" was significantly lower in the CTrach group when compared to Fibreoptic group (220.67 ± 95.98 vis-a-vis 136.67 ± 68.98). The ease of visualisation of laryngeal structures was comparable (P = 0.713) and the baseline haemodynamic parameters were comparable between the 2 groups and at various designated intervals. In total, 6.66% and 26.66% patients in group FB and CT group, respectively, required manoeuvres. However, difference was statistically significant (P < 0.05). CONCLUSION: Both Fibreoptic-assisted and LMA CTrach-assisted visualization of laryngeal structures in thyroidectomy are equally efficacious in terms of the optimal laryngeal view obtained and ease of visualisation. However, the time taken to achieve optimal laryngeal view was lesser with LMA CTrach.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA