Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Methods ; 210: 44-51, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36642393

RESUMEN

The therapeutic action of carbon monoxide (CO) is very well known and has been studied on various types of tissues and animals. However, real-time spatial and temporal tracking and release of CO is still a challenging task. This paper reported an amphiphilic CO sensing probe NP and phospholipid 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) based nanoscale vesicular sensing system Ves-NP consisting of NP. The liposomal sensing system (Ves-NP) showed good selectivity and sensitivity for CO without any interference from other relevant biological analytes. Detection of CO is monitored by fluorescence OFF-ON signal. Ves-NP displayed LOD of 5.94 µM for CO detection with a response time of 5 min. Further, in a novel attempt, Ves-NP is co-embedded with the amphiphilic CO-releasing molecule 1-Mn(CO)3 to make an analyte replacement probe Ves-NP-CO. Having a both CO releasing and sensing moiety at the surface of the same liposomal system Ves-NP-CO play a dual role. Ves-NP-CO is used for the simultaneous release and recognition of CO that can be controlled by light. Thus, in this novel approach, for the first time we have attached both the release and recognition units of CO in the vesicular surface, both release and recognition simultaneously monitored by the change in fluorescent OFF-ON signal.


Asunto(s)
Monóxido de Carbono , Liposomas , Animales , Fosfolípidos , Fluorescencia
2.
Arch Pharm (Weinheim) ; 357(3): e2300650, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38154111

RESUMEN

A library of 20 novel benzenesulfonamide incorporating thiazole tethered 1,2,3-triazoles 1-4a-e was synthesized and screened for their antimicrobial, antioxidant, and cytotoxicity studies. Amoxicillin and fluconazole were used as reference antibacterial and antifungal drugs, respectively. Further, energies of frontier molecular orbitals were calculated for all the synthesized target compounds 1-4a-e to correlate electronic parameters with the observed biological results. Global reactivity descriptors, including highest occupied molecular orbitals-lowest unoccupied molecular orbitals energy gap, electronegativity, chemical hardness, chemical softness, and electrophilicity index, were also calculated for the synthesized molecules. All the tested compounds possessed moderate to excellent antibacterial potency; however, 3d and 4d exhibited the overall highest antibacterial effect (minimum inhibitory concentration [MIC] values 5-11 µM) while 2c showed the highest antifungal effect (MIC value 6 µM). Compound 3c exhibited the highest antioxidant activity with a % radical scavenging activity value of 95.12. The cytotoxicity of the compounds 1-4a-e was also checked against an animal cell line and a plant seed germination cell line, and the compounds were found to be safe against both the tested cell lines.


Asunto(s)
Antiinfecciosos , Antifúngicos , Animales , Antifúngicos/farmacología , Triazoles/farmacología , Antioxidantes/farmacología , Bencenosulfonamidas , Relación Estructura-Actividad , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Tiazoles/farmacología , Estructura Molecular
3.
Arch Pharm (Weinheim) ; : e2400157, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713910

RESUMEN

Two novel series of hydrazinyl-based benzenesulfonamides 9a-j and 10a-j were designed and synthesized using SLC-0111 as the lead molecule. The newly synthesized compounds were evaluated for their inhibitory activity against four different human carbonic anhydrase (hCA) isoforms I, II, IX, and XII. Both the series reported here were practically inactive against the off-target isozyme hCA I. Notably, derivative 10a exhibited superior potency (Ki of 10.2 nM) than acetazolamide (AAZ) against the cytosolic isoform hCA II. The hCA IX and XII isoforms implicated in tumor progression were effectively inhibited with Kis in the low nanomolar range of 20.5-176.6 nM and 6.0-127.5 nM, respectively. Compound 9g emerged as the most potent and selective hCA IX and XII inhibitor with Ki of 20.5 nM and SI of 200.1, and Ki of 6.0 nM and SI of 683.7, respectively, over hCA I. Furthermore, six compounds (9a, 9h, 10a, 10g, 10i, and 10j) exhibited significant inhibition toward hCA IX (Kis = 27.0, 41.1, 27.4, 25.9, 40.7, and 30.8 nM) relative to AAZ and SLC-0111 (Kis = 25.0 and 45.0 nM, respectively). These findings underscore the potential of these derivatives as potent and selective inhibitors of hCA IX and XII over the off-target hCA I and II.

4.
Arch Pharm (Weinheim) ; : e2400366, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38991221

RESUMEN

The present research focused on the tail-approach synthesis of novel extended thiazolotriazoles (8a-8j) and triazolothiadiazines (11a-11j) including aminotriazole intermediate 10. After successful synthesis, all the compounds were evaluated for their inhibition potential against cytosolic isoforms of human carbonic anhydrase (hCA I, II), tumor-linked transmembrane isoforms (hCA IX, XII), and cathepsin B. As per the inhibition data, the newly synthesized compounds showed poor inhibition against hCA I. Many of the compounds showed effective inhibition toward hCA IX and/or XII in low nanomolar concentration. Despite the strong to moderate inhibition of hCA II by these compounds, more than half of them demonstrated better inhibition against hCA IX and/or XII, comparatively. Further, insights of CA inhibition data of these extended analogs and their comparison with earlier reported thiazolotriazole and triazolothiadiazine derivatives might help in the rational design of novel potent and selective hCA IX and XII inhibitors. The novel compounds were also found to possess anti-cathepsin B potential at a low concentration of 10-7 M. Broadly, compounds of series 11a-11j presented more effective inhibition against cathepsin B than their counterparts in series 8a-8j. Moreover, these in vitro results with respect to cathepsin B inhibition were also supported by the in silico insights obtained via molecular modeling studies.

5.
Arch Pharm (Weinheim) ; : e2400114, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900588

RESUMEN

The design and synthesis of a library of 21 novel benzenesulfonamide-bearing 3-functionalized pyrazole-linked 1,2,3-triazole derivatives as dual inhibitors of cathepsin B and carbonic anhydrase enzymes are reported. The target 1,2,3-triazole-linked pyrazolic esters (16) were synthesized by the condensation of 1,2,3-triazolic diketo esters with 4-hydrazinobenzenesulfonamide hydrochloride, and these were further converted into the corresponding carboxylic acid (17) and carboxamide (18) analogs. The synthesized compounds were assayed in vitro for their inhibition potential against human carbonic anhydrase (hCA) isoforms I, II, IX, and XII. They were found to be potent inhibitors at the low nanomolar level against the cancer-related hCA IX and XII and to be selective towards the cytosolic isoform hCA I. The physiologically important isoform hCA II was potently inhibited by all the newly synthesized compounds showing KI values ranging between 0.8 and 561.5 nM. The ester derivative 16c having 4-fluorophenyl (KI = 5.2 nM) was the most potent inhibitor of hCA IX, and carboxamide derivative 18b (KI = 2.2 nM) having 4-methyl substituted phenyl was the most potent inhibitor of hCA XII. The newly synthesized compounds exhibited potent cathepsin B inhibition at 10-7 M concentration. In general, the carboxamide derivatives (18) showed higher % inhibition as compared with the corresponding ester derivatives (16) and carboxylic acid derivatives (17) for cathepsin B. The interactions of the target compounds with the active sites of cathepsin B and CA were studied through molecular docking studies. Further, the in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) and drug-likeness properties of the target compounds were also studied.

6.
Arch Pharm (Weinheim) ; 357(3): e2300372, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38012535

RESUMEN

Herein, we report the design and synthesis of a library of 28 new 1,2,3-triazole derivatives bearing carboxylic acid and ester moieties as dual inhibitors of carbonic anhydrase (CA) and cathepsin B enzymes. The synthesised compounds were assayed in vitro for their inhibition potential against four human CA (hCA) isoforms, I, II, IX and XII. The carboxylic acid derivatives displayed low micromolar inhibition against hCA II, IX and XII in contrast to the ester derivatives. Most of the target compounds showed poor inhibition against the hCA I isoform. 4-Fluorophenyl appended carboxylic acid derivative 6c was found to be the most potent inhibitor of hCA IX and hCA XII with a KI value of 0.7 µM for both the isoforms. The newly synthesised compounds showed dual inhibition towards CA as well as cathepsin B. The ester derivatives exhibited higher % inhibition at 10-7 M concentration as compared with the corresponding carboxylic acid derivatives against cathepsin B. The results from in silico studies of the target compounds with the active site of cathepsin B were found in good correlation with the in vitro results. Moreover, two compounds, 5i and 6c, showed cytotoxic activity against A549 lung cancer cells, with IC50 values lower than 100 µM.


Asunto(s)
Anhidrasas Carbónicas , Ácidos Carboxílicos , Humanos , Ácidos Carboxílicos/farmacología , Ésteres/farmacología , Inhibidores de Anhidrasa Carbónica/farmacología , Catepsina B , Relación Estructura-Actividad , Triazoles/farmacología , Isoformas de Proteínas
7.
Curr Microbiol ; 80(4): 102, 2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36773109

RESUMEN

Salinity is one of the major challenges for cultivation of crops in a sustainable way because it severely affects plant growth and yield. Keeping this challenge in view, in the current study, a salt-tolerant Halomonas MV-19 was isolated from an extreme niche of mud volcano of Andaman Nicobar Island, India and identified on the basis of standard morphological, biochemical, and physiological tests and identified as Halomonas sulfidaeris strain MV-19 by 16S rRNA gene sequencing. The bacterium can grow on nutrient agar and nutrient broth supplemented with 3.5 M (≥ 20%) sodium chloride (NaCl). Sugar utilization assay revealed that H. sulfidaeris MV-19 utilizes only three sugars (dextrose, fructose, and mannose) from among twenty four tested sugars. The best growth of H. sulfidaeris MV-19 was observed in nutrient broth supplemented with 8% NaCl. When the broth was supplemented with dextrose, fructose, and mannose, the H. sulfidaeris MV-19 grew maximally in nutrient broth supplemented with 8% NaCl and 5% fructose. This strain produced exopolysaccharides (EPS) in nutrient broth supplemented with 8% NaCl and sugars (dextrose, fructose, and mannose). The EPS production was increased by 350% (three and half time) after addition of 5% fructose in nutrient broth compare with the EPS production in nutrient broth without supplemented with sugars. H. sulfidaeris MV-19 strain can produce EPS, which can help aggregate soil particle and reduced osmotic potential in soil, thus, be useful in alleviation of salinity stress in different crops cultivated in saline soils. The findings of the current investigation are expected to contribute towards effective abiotic stress management.


Asunto(s)
Halomonas , Manosa , ARN Ribosómico 16S/genética , Cloruro de Sodio , Suelo , Glucosa , Fructosa , Filogenia
8.
Arch Pharm (Weinheim) ; 356(1): e2200391, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36316236

RESUMEN

Twenty novel 1,2,3-triazole benzenesulfonamides featuring nitrile 8a-g, carbothioamide 9a-f, and N'-hydroxycarboximidamide 10a-g functionalities were designed and synthesized to improve potency and selectivity as carbonic anhydrase inhibitors (CAIs). The synthesized 1,2,3-triazole compounds were tested in vitro as CAIs against four physiologically and pharmacologically relevant isoforms of human carbonic anhydrase (hCA I, II, IV, and IX). Compounds 8a-g, 9a-f, and 10a-g displayed variable inhibition constants ranging from 8.1 nM to 3.22 µM for hCA I, 4.7 nM to 0.50 µM for hCA II, 15.0 nM to 3.7 µM for hCA IV, and 29.6 nM to 0.27 µM for hCA IX. As per the inhibition data profile, compounds 9a-e exhibited strong efficacy for hCA IV, whereas the inhibition was found to be somewhat diminished in the case of hCA IX by nearly all the compounds. A computational protocol based on docking and MM-GBSA was conducted to reveal the plausible interactions of the targeted sulfonamides within the hCA II and IX binding sites. The outcomes of appending various functionalities at the C-4 position of the 1,2,3-triazole motif over the inhibition potential and selectivity of the designed sulfonamides were examined with a potential for the discovery of new isoform selective CAIs. The CAI and SAR data established the significance of the synthesized 1,2,3-triazoles as building blocks for developing CAI drugs.


Asunto(s)
Anhidrasa Carbónica I , Triazoles , Humanos , Anhidrasa Carbónica I/metabolismo , Estructura Molecular , Relación Estructura-Actividad , Triazoles/farmacología , Triazoles/química , Relación Dosis-Respuesta a Droga , Sulfonamidas/farmacología , Sulfonamidas/química , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/química , Bencenosulfonamidas
9.
Arch Pharm (Weinheim) ; 356(2): e2200439, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36344431

RESUMEN

Inhibition of human carbonic anhydrase (hCA) isoform IX with concurrent induction of apoptosis is a promising approach for targeting cancer in humans. Prompted by the scope, novel benzenesulfonamides containing the 1,2,3-triazolylthiazolotriazole tail were synthesized and screened as inhibitors of hCA isoforms I, II, IV, and IX. The tumor-associated isoform hCA IX was strongly inhibited by the sulfonamides reported here with KI values ranging from 45 nM to 1.882 µM. Overall, nine compounds showed hCA IX inhibition with KI < 250 nM. The glaucoma-associated isoform hCA II was moderately inhibited while the cytosolic isoform hCA I and membrane-bound isoform hCA IV were weakly inhibited by the synthesized sulfonamides. Compound 6Ac (KI = 3.6 nM) was found to be an almost three times more potent inhibitor of hCA II as compared to the standard drug acetazolamide (KI = 12.1 nM). The selective hCA IX inhibitors were further studied for their apoptotic efficacy in goat ovarian cells and showed better results as compared to the control. A comparative study of previously synthesized compounds and molecular docking study of representative compounds revealed some important generalizations that could prove beneficial in further investigations of isoform-selective hCA inhibitors.


Asunto(s)
Inhibidores de Anhidrasa Carbónica , Neoplasias , Humanos , Inhibidores de Anhidrasa Carbónica/farmacología , Estructura Molecular , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Sulfonamidas/farmacología , Anhidrasa Carbónica I/metabolismo , Apoptosis , Bencenosulfonamidas
10.
Arch Pharm (Weinheim) ; 356(11): e2300349, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37704930

RESUMEN

Twenty-one novel extended analogs of acetazolamide were synthesized and screened in vitro for their inhibition efficacy against human carbonic anhydrase (hCA) isoforms I, II, IX, XII, and cathepsin B. The majority of the compounds were found to be effective inhibitors of tumor-associated hCA IX and XII, and poor inhibitors of cytosolic hCA I. Despite the strong to moderate inhibition potential possessed by these compounds toward another cytosolic isoform hCA II, some of them demonstrated better potency against hCA IX and/or XII isoforms as compared to hCA II. Four compounds (11f, 11g, 12c, and 12g) effectively inhibited hCA IX and/or XII isoforms with considerable selectivity over the off-targets hCA I and II. Interestingly, five compounds, including 11f, 11g, 12c, 12d, and 12g, inhibited hCA IX even better than the clinically used acetazolamide. Some of the novel synthesized compounds exhibited higher anti-cathepsin B potential than acetazolamide, with % inhibition of around 50%, at a concentration of 10-7 M. Further, two compounds (12g and 12c) that showed effective and selective inhibition activity profiles against hCA IX and XII were additionally found to be effective inhibitors of cathepsin B.


Asunto(s)
Anhidrasas Carbónicas , Neoplasias , Humanos , Anhidrasas Carbónicas/metabolismo , Acetazolamida/farmacología , Catepsina B , Relación Estructura-Actividad , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasa Carbónica I , Isoformas de Proteínas , Estructura Molecular
11.
Bioorg Chem ; 126: 105920, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35671645

RESUMEN

Human carbonic anhydrase (hCA) isoforms hCA IX and hCA XII are well established anticancer drug targets and their selective inhibition is highly desired for the proper treatment of cancer. Lack of isoform-selectivity in current clinically used CA inhibitors (CAIs) is a major concern as it leads to undesired side effects, associated with off-target inhibition. Thus, there is need to explore alternative approaches for the design of isoform-selective inhibitors and the leading promising approach for the design of isoform-selective CAIs is "the tail-approach". Virtually, most drug design studies in the last decade were done by considering the tail-approach reported in 1999. The past decade of 2010-2020 witnessed progressive maturation of this approach as a large number of CAIs have been designed and synthesised based on it, many of which turned out to be effective as well as selective hCA IX and hCA XII inhibitors. This review covers the past decade (2010-2020) research, considering selective as well as potent inhibitors of tumor associated isoforms, hCA IX and hCA XII, which include newer generation inhibitors containing sulfonamides or their bioisosteres, non-classical inhibitors (including carboxylic acid/ester, coumarin and sulfocoumarin classes) and various other novel classes of inhibitors belonging to newly identified chemotypes/scaffolds.


Asunto(s)
Inhibidores de Anhidrasa Carbónica , Neoplasias , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/uso terapéutico , Humanos , Isoenzimas/metabolismo , Estructura Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Relación Estructura-Actividad , Sulfonamidas/farmacología
12.
Bioorg Chem ; 123: 105764, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35366582

RESUMEN

A library of twenty-two arylthiazolylhydrazono-1,2,3-triazoles incorporating sulfanilamide and metanilamide moieties have been synthesized by utilizing tail-approach and characterized by their IR, 1H NMR, 13C NMR, HRMS and single crystal studies. Further, these newly synthesized compounds were screened in-vitro for their inhibition efficacy against physiologically relevant hCA I, II, IV and IX isoforms. Inhibition data revealed that, in broader sense, sulfanilamide analogues (4a-4k) were comparatively better inhibitors of cytosolic hCA I and II isoforms than metanilamide analogues (5a-5k), whereas exactly opposite trend was observed in case of inhibition of membrane bound hCA IV and transmembrane hCA IX. For hCA I, more than half of the synthesized compounds were found to be moderate inhibitors and three compounds 4b, 5b and 5e (Ki of 40.6, 224.7 and 74.4 nM, respectively) appeared as better inhibitors than reference drug AAZ (Ki = 250 nM). hCA II was potently inhibited by 4e-4g and 5e with Ki of 18.1, 14.1, 14.9 and 17.8 nM, respectively. Interestingly, 4e-4g selectively inhibited hCA II with selectivity of > 15-fold over hCA I, IV and IX isoforms. All the compounds presented moderate to weak inhibition profiles against glaucoma associated hCA IV with Ki of 88 nM-8.87 µM and except 4f, 5k, significant inhibition profiles against tumor associated hCA IX isoform with Ki spanning in range of 0.113 µM-0.318 µM. Moreover, 5e was the only compound among the whole series which effectively inhibited all the tested isoforms.


Asunto(s)
Anhidrasa Carbónica I , Inhibidores de Anhidrasa Carbónica , Antígenos de Neoplasias , Anhidrasa Carbónica I/metabolismo , Anhidrasa Carbónica II , Anhidrasa Carbónica IV , Anhidrasa Carbónica IX , Inhibidores de Anhidrasa Carbónica/química , Humanos , Estructura Molecular , Relación Estructura-Actividad , Sulfanilamida , Sulfonamidas/química , Triazoles/química , Triazoles/farmacología
13.
J Enzyme Inhib Med Chem ; 37(1): 1454-1463, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35616287

RESUMEN

In search of selective carbonic anhydrase (CA) IX inhibitors endowed with apoptotic inducing properties, we designed and synthesised two subsets of 4- and 3-(5-aryl-(4-phenylsulphonyl)-1H-1,2,3-triazol-1-yl)benzenesulphonamides. All compounds were assayed for human carbonic anhydrase (hCA) isoforms I, II, IV, and IX inhibition. Isoforms hCA I and hCA IV were weakly inhibited by most of the synthesised compounds. Many four-substituted benzenesulphonamides displayed low nanomolar inhibition against isoform hCA II, unlike the three-substituted analogues. All target compounds exhibited good inhibition profile with KI values ranging from 16.4 to 66.0 nM against tumour-associated isoform hCA IX. Some selective and potent inhibitors of hCA IX were assayed for in vitro apoptotic induction in goat testicular cells. Compounds 10d and 10h showed interesting apoptotic induction potential. The present study may provide insights into a strategy for the design of novel anticancer agents based on hCA inhibitors endowed with apoptotic interference.


Asunto(s)
Sulfonamidas , Triazoles , Antígenos de Neoplasias , Apoptosis , Anhidrasa Carbónica I/metabolismo , Anhidrasa Carbónica IX/metabolismo , Inhibidores de Anhidrasa Carbónica/farmacología , Estructura Molecular , Relación Estructura-Actividad , Sulfonamidas/farmacología , Triazoles/farmacología
14.
Arch Pharm (Weinheim) ; 355(1): e2100241, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34596922

RESUMEN

Two series comprising 20 novel benzenesulfonamides bearing thioureido-linked pyrazole 8 and amino-1,2,4-thiadiazole 10 were synthesized and assayed as human carbonic anhydrase (hCA) inhibitors against isoforms I and II as well as the tumor-associated isoforms IX and XII. Molecular modeling studies of some potent derivatives (8a, 8c, 10a, and 10c) were also performed against isoforms hCA I, II, and XII. Both the promising series of compounds were synthesized by using commercially available mtethyl ketones and sulfanilamide as the starting materials. Interestingly, this paper also reports a novel methodology for the synthesis of amino-1,2,4-thiadiazoles 10 using 3-amino isoxazoles and 4-isothiocyanatobenzenesulfonamide as reactants. The activity profile of all the newly synthesized compounds reveals that amino-linked 1,2,4-thiadiazoles 10 were better inhibitors of the cytosolic isoform, hCA I, as compared to thioureido-linked pyrazoles 8. Further, hCA II was strongly inhibited by nearly all the newly synthesized sulfonamides, while all the compounds were less effective as hCA IX and XII inhibitors compared to the standard drug acetazolamide. However, in terms of selectivity, compound 8e was found to be the most selective inhibitor of hCA II, which is the isoform associated with glaucoma, edema, altitude sickness, and epilepsy.


Asunto(s)
Inhibidores de Anhidrasa Carbónica/farmacología , Pirazoles/farmacología , Sulfonamidas/farmacología , Tiadiazoles/farmacología , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Humanos , Isoenzimas , Modelos Moleculares , Pirazoles/síntesis química , Pirazoles/química , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química , Tiadiazoles/síntesis química , Tiadiazoles/química , Bencenosulfonamidas
15.
Chemistry ; 25(30): 7387-7395, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-30942502

RESUMEN

Nucleotides that contain two nucleobases (double-headed nucleotides) have the potential to condense the information of two separate nucleotides into one. This presupposes that both bases must successfully pair with a cognate strand. Here, double-headed nucleotides that feature cytosine, guanine, thymine, adenine, hypoxanthine, and diaminopurine linked to the C2'-position of an arabinose scaffold were developed and examined in full detail. These monomeric units were efficiently prepared by convergent synthesis and incorporated into DNA oligonucleotides by means of the automated phosphoramidite method. Their pairing efficiency was assessed by UV-based melting-temperature analysis in several contexts and extensive molecular dynamics studies. Altogether, the results show that these double-headed nucleotides have a well-defined structure and invariably behave as functional dinucleotide mimics in DNA duplexes.


Asunto(s)
Emparejamiento Base , Nucleótidos/química , 2-Aminopurina/análogos & derivados , 2-Aminopurina/química , Adenina/química , Disparidad de Par Base , Citosina/química , ADN/química , Guanina/química , Hipoxantina/química , Modelos Moleculares , Conformación de Ácido Nucleico , Timina/química
16.
Bioorg Chem ; 85: 198-208, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30622012

RESUMEN

A series of twenty four hydroxy-trifluoromethylpyrazoline-carbonyl-1,2,3-triazoles and four hydrazones bearing benzenesulfonamide moieties was obtained by condensation of carboxyhydrazides with substituted 1,3-diketones. All the newly synthesized compounds were investigated as inhibitors of physiologically and pharmacologically relevant human (h) carbonic anhydrsae (CA, EC 4.2.1.1) cytosolic isoforms hCA I and II, as well as transmembrane tumor-assosciated isoforms hCA IX and XII. These compounds exhibited excellent CA inhibitory potency against the four CA isoenzymes as compared to clinically used reference drug acetazolamide (AAZ). Some compounds bearing bulkier group at C-5' position of 1,2,3-triazoles ring were weaker inhibitors of hCA I. Inhibition assay against hCA II indicates, that several derivatives exhibited upto 27-fold more effective inhibitory activity compared to AAZ. Five of the assayed compounds displayed low nanomolar potency (Ki ≤ 10 nM) against hCA IX, whereas five compounds were found to be endowed with excellent inhibitory potencies (Ki ≤ 5 nM) against hCA XII. The biological activity profile presented herein will be useful for designing new leads and provide candidates for preclinical investigations.


Asunto(s)
Inhibidores de Anhidrasa Carbónica/química , Hidrazonas/química , Pirazoles/química , Sulfonamidas/química , Triazoles/química , Inhibidores de Anhidrasa Carbónica/síntesis química , Humanos , Hidrazonas/síntesis química , Estructura Molecular , Pirazoles/síntesis química , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Triazoles/síntesis química
17.
Bioorg Med Chem ; 25(7): 2084-2090, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28242171

RESUMEN

A new pyrene-modified nucleotide monomer is introduced, wherein pyrene is attached to the 2'-position of arabino-uridine through a triazolemethyl linker. When the monomer is introduced into oligonucleotides, very stable DNA duplexes and three way junctions are obtained. An oligonucleotide featuring two modifications in the center shows four-fold increase in the intensity of the pyrene excimer signal on hybridization with an RNA target but not with a DNA target. The new nucleotide monomer has potential in DNA invader probes as well as in RNA targeting and detection.


Asunto(s)
Nucleótidos/química , Pirenos/química , Triazoles/química , Espectroscopía de Resonancia Magnética con Carbono-13 , Fluorescencia , Sondas de Oligonucleótidos , Espectroscopía de Protones por Resonancia Magnética , Espectrometría de Masa por Ionización de Electrospray
18.
Bioorg Med Chem ; 25(3): 1286-1293, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28065499

RESUMEN

Two series of 20 novel heterocyclic compounds, imidazothiadiazoles (3a-3j) and thiazolotriazoles (4a-4j) bearing benzenesulfonamide moiety were synthesized in order to investigate the inhibition potential of both scaffolds against four selected human carbonic anhydrase isoforms (hCA I, II, IX & XII). Against human isoform hCA I, compounds 3j, 4a-4c, and 4j showed better inhibition potential (Ki<100nM) than the standard drug acetazolamide (AZA). Against hCA II, all the compounds showed moderate inhibition with the exception of 3a which showed nearly two fold better profile compared to AZA. Against hCA IX, all the compounds showed moderate inhibitory potential than AZA, whereas against hCA XII, compounds 3a-3c showed better inhibitory potential compared to AZA.


Asunto(s)
Anhidrasa Carbónica IX/antagonistas & inhibidores , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/metabolismo , Neoplasias/enzimología , Antígenos de Neoplasias/metabolismo , Anhidrasa Carbónica IX/metabolismo , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad
19.
J Enzyme Inhib Med Chem ; 32(1): 1187-1194, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28891338

RESUMEN

A library of benzenesulphonamides incorporating 1,2,3-triazole rings functionalised with ester, carboxylic acid, carboxamide, carboxyhydrazide, and hydroxymethyl moieties were synthesised. The carbonic anhydrase (CAs, EC 4.2.1.1) inhibitory activity of the new compounds was assessed against four human (h) isoforms, hCA I, hCA II, hCA IV, and hCA IX. Among them, hCA II and IV are anti-glaucoma drug targets, being involved in aqueous humour secretion within the eye. hCA I was inhibited with Ki's ranging between 8.3 nM and 0.8737 µM. hCA II, the physiologically dominant cytosolic isoform, was excellently inhibited by these compounds, with Ki's in the range of 1.6-9.4 nM, whereas hCA IV was effectively inhibited by most of them, with Ki's in the range of 1.4-55.3 nM. Thirteen of the twenty sulphonamides were found to be excellent inhibitors of tumour associated hCA IX with Ki's ≤ 9.5 nM. Many of the new compounds reported here showed low nM inhibitory action against hCA II, IV, and IX, isoforms involved in glaucoma and some tumours, making them interesting candidates for further medicinal chemistry/pharmacologic studies.


Asunto(s)
Inhibidores de Anhidrasa Carbónica/farmacología , Sulfonamidas/farmacología , Triazoles/farmacología , Anhidrasa Carbónica I/antagonistas & inhibidores , Anhidrasa Carbónica I/metabolismo , Anhidrasa Carbónica II/antagonistas & inhibidores , Anhidrasa Carbónica II/metabolismo , Anhidrasa Carbónica IV/antagonistas & inhibidores , Anhidrasa Carbónica IV/metabolismo , Anhidrasa Carbónica IX/antagonistas & inhibidores , Anhidrasa Carbónica IX/metabolismo , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química , Triazoles/química , Bencenosulfonamidas
20.
Bioorg Med Chem ; 24(13): 2882-2886, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27137360

RESUMEN

Four novel scaffolds consisting of total 24 compounds (1a-1o, 2a-2c, 3a-3c and 4a-4c) bearing aromatic sulfonamide and coumarin moieties connected through various linkers were synthesized in order to synergize the inhibition potential of both the moieties against four selected human carbonic anhydrase isoforms (hCA I, II, IX & XII). All compounds were found to be potent inhibitors of tumor associated hCA IX & XII while at the same time required large amounts to inhibit off-targeted housekeeping hCA I & II. Selectivity was more pronounced against hCA II over I, and hCA XII over IX. Results were compared with antitumor drug acetazolamide. One derivative 2b of series 2 was found to be a better selective inhibitor of hCA IX and XII.


Asunto(s)
Anhidrasa Carbónica IX/antagonistas & inhibidores , Anhidrasa Carbónica IX/metabolismo , Inhibidores de Anhidrasa Carbónica/síntesis química , Anhidrasas Carbónicas/metabolismo , Cumarinas/química , Sulfonamidas/síntesis química , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Anhidrasa Carbónica IX/química , Inhibidores de Anhidrasa Carbónica/química , Anhidrasas Carbónicas/química , Cumarinas/síntesis química , Activación Enzimática/efectos de los fármacos , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Estructura Molecular , Sulfonamidas/química , Sulfonamidas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA