Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 288(3): 1568-81, 2013 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-23223335

RESUMEN

Cardiac ATP-sensitive potassium (K(ATP)) channels are key sensors and effectors of the metabolic status of cardiomyocytes. Alteration in their expression impacts their effectiveness in maintaining cellular energy homeostasis and resistance to injury. We sought to determine how activation of calcium/calmodulin-dependent protein kinase II (CaMKII), a central regulator of calcium signaling, translates into reduced membrane expression and current capacity of cardiac K(ATP) channels. We used real-time monitoring of K(ATP) channel current density, immunohistochemistry, and biotinylation studies in isolated hearts and cardiomyocytes from wild-type and transgenic mice as well as HEK cells expressing wild-type and mutant K(ATP) channel subunits to track the dynamics of K(ATP) channel surface expression. Results showed that activation of CaMKII triggered dynamin-dependent internalization of K(ATP) channels. This process required phosphorylation of threonine at 180 and 224 and an intact (330)YSKF(333) endocytosis motif of the K(ATP) channel Kir6.2 pore-forming subunit. A molecular model of the µ2 subunit of the endocytosis adaptor protein, AP2, complexed with Kir6.2 predicted that µ2 docks by interaction with (330)YSKF(333) and Thr-180 on one and Thr-224 on the adjacent Kir6.2 subunit. Phosphorylation of Thr-180 and Thr-224 would favor interactions with the corresponding arginine- and lysine-rich loops on µ2. We concluded that calcium-dependent activation of CaMKII results in phosphorylation of Kir6.2, which promotes endocytosis of cardiac K(ATP) channel subunits. This mechanism couples the surface expression of cardiac K(ATP) channels with calcium signaling and reveals new targets to improve cardiac energy efficiency and stress resistance.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Regulación de la Expresión Génica , Miocitos Cardíacos/enzimología , Canales de Potasio de Rectificación Interna/metabolismo , Complejo 2 de Proteína Adaptadora/química , Complejo 2 de Proteína Adaptadora/metabolismo , Animales , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/química , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Dinaminas/genética , Dinaminas/metabolismo , Endocitosis , Activación Enzimática , Células HEK293 , Humanos , Transporte Iónico , Ratones , Ratones Transgénicos , Modelos Moleculares , Miocitos Cardíacos/citología , Técnicas de Placa-Clamp , Fosforilación , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/genética , Transducción de Señal , Treonina/metabolismo
2.
J Biol Chem ; 287(23): 19266-74, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22493497

RESUMEN

The epithelial Na(+) channel (ENaC) is critical for Na(+) homeostasis and blood pressure control. Defects in its regulation cause inherited forms of hypertension and hypotension. Previous work found that ENaC gating is regulated by proteases through cleavage of the extracellular domains of the α and γ subunits. Here we tested the hypothesis that ENaC is regulated by proprotein convertase subtilisin/kexin type 9 (PCSK9), a protease that modulates the risk of cardiovascular disease. PCSK9 reduced ENaC current in Xenopus oocytes and in epithelia. This occurred through a decrease in ENaC protein at the cell surface and in the total cellular pool, an effect that did not require the catalytic activity of PCSK9. PCSK9 interacted with all three ENaC subunits and decreased their trafficking to the cell surface by increasing proteasomal degradation. In contrast to its previously reported effects on the LDL receptor, PCSK9 did not alter ENaC endocytosis or degradation of the pool of ENaC at the cell surface. These results support a role for PCSK9 in the regulation of ENaC trafficking in the biosynthetic pathway, likely by increasing endoplasmic reticulum-associated degradation. By reducing ENaC channel number, PCSK9 could modulate epithelial Na(+) absorption, a major contributor to blood pressure control.


Asunto(s)
Retículo Endoplásmico/metabolismo , Células Epiteliales/metabolismo , Canales Epiteliales de Sodio/biosíntesis , Proproteína Convertasas/metabolismo , Proteolisis , Serina Endopeptidasas/metabolismo , Animales , Presión Sanguínea/fisiología , Retículo Endoplásmico/genética , Células Epiteliales/citología , Canales Epiteliales de Sodio/genética , Células HEK293 , Humanos , Transporte Iónico/fisiología , Proproteína Convertasa 9 , Proproteína Convertasas/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Transporte de Proteínas/fisiología , Receptores de LDL/genética , Receptores de LDL/metabolismo , Serina Endopeptidasas/genética , Sodio/metabolismo , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA