Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS Pathog ; 17(2): e1009072, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33600418

RESUMEN

Throughout its enzootic cycle, the Lyme disease spirochete Borreliella (Borrelia) burgdorferi, senses and responds to changes in its environment using a small repertoire of transcription factors that coordinate the expression of genes required for infection of Ixodes ticks and various mammalian hosts. Among these transcription factors, the DnaK suppressor protein (DksA) plays a pivotal role in regulating gene expression in B. burgdorferi during periods of nutrient limitation and is required for mammalian infectivity. In many pathogenic bacteria, the gene regulatory activity of DksA, along with the alarmone guanosine penta- and tetra-phosphate ((p)ppGpp), coordinate the stringent response to various environmental stresses, including nutrient limitation. In this study, we sought to characterize the role of DksA in regulating the transcriptional activity of RNA polymerase and its role in the regulation of RpoS-dependent gene expression required for B. burgdorferi infectivity. Using in vitro transcription assays, we observed recombinant DksA inhibits RpoD-dependent transcription by B. burgdorferi RNA polymerase independent of ppGpp. Additionally, we determined the pH-inducible expression of RpoS-dependent genes relies on DksA, but this relationship is independent of (p)ppGpp produced by Relbbu. Subsequent transcriptomic and western blot assays indicate DksA regulates the expression of BBD18, a protein previously implicated in the post-transcriptional regulation of RpoS. Moreover, we observed DksA was required for infection of mice following intraperitoneal inoculation or for transmission of B. burgdorferi by Ixodes scapularis nymphs. Together, these data suggest DksA plays a central role in coordinating transcriptional responses in B. burgdorferi required for infectivity through DksA's interactions with RNA polymerase and post-transcriptional control of RpoS.


Asunto(s)
Proteínas Bacterianas/metabolismo , Borrelia burgdorferi/fisiología , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Ixodes/microbiología , Enfermedad de Lyme/transmisión , Animales , Proteínas Bacterianas/genética , Femenino , Enfermedad de Lyme/microbiología , Ratones , Factor sigma/genética , Factor sigma/metabolismo , Estrés Fisiológico
2.
J Biol Chem ; 293(29): 11271-11282, 2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-29848552

RESUMEN

The genus Salmonella is responsible for many illnesses in humans and other vertebrate animals. We report here that Salmonella enterica serovar Typhimurium harbors three transketolases that support the non-oxidative branch of the pentose phosphate pathway. BLAST analysis identified two genes, STM14_2885 and STM14_2886, that together encode a putative transketolase (TktC) with 46-47% similarity to the known TktA and TktB isoforms. Assessing the mRNA and protein expression for each of the three transketolases, we determined that all are expressed in WT cells and regulated to varying extents by the alternative sigma factor RpoS. Enzyme assays with lysates from WT and transketolase-knockout strains established that TktA is responsible for >88% of the transketolase activity in WT cells. We purified recombinant forms of each isoenzyme to assess the kinetics for canonical transketolase reactions. TktA and TktB had comparable values for Vmax (539-1362 µm NADH consumed/s), Km (80-739 µm), and catalytic efficiency (1.02 × 108-1.06 × 109 m-1/s) for each substrate tested. The recombinant form of TktC had lower Km values (23-120 µm), whereas the Vmax (7.8-16 µm NADH consumed/s) and catalytic efficiency (5.58 × 106 to 6.07 × 108 m-1/s) were 10-100-fold lower. Using a murine model of Salmonella infection, we showed that a strain lacking all three transketolases is avirulent in C57BL/6 mice. These data provide evidence that S Typhimurium possesses three transketolases that contribute to pathogenesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Vía de Pentosa Fosfato , Salmonella typhimurium/metabolismo , Transcetolasa/metabolismo , Animales , Proteínas Bacterianas/genética , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Glucosa/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Ratones Endogámicos C57BL , Oxidación-Reducción , Infecciones por Salmonella/metabolismo , Infecciones por Salmonella/microbiología , Salmonella typhimurium/genética , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/patogenicidad , Transcetolasa/genética , Virulencia
3.
mSphere ; 6(6): e0082621, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34817238

RESUMEN

Helicobacter pylori colonization of the stomach is a strong risk factor for the development of stomach cancer and peptic ulcer disease. In this study, we tested the hypothesis that H. pylori infection triggers alterations in gastric lipid composition. Mongolian gerbils were experimentally infected with H. pylori for 3 months. Conventional histologic staining revealed mucosal inflammation in stomachs from the H. pylori-infected animals but not in stomachs from uninfected control animals. Atrophic gastritis (a premalignant condition characterized by loss of corpus-specific parietal and chief cells), gastric mucosal hyperplasia, dysplasia, and/or gastric cancer were detected in stomachs from several infected animals. We then used imaging mass spectrometry to analyze the relative abundance and spatial distribution of gastric lipids. We detected ions corresponding to 36 distinct lipids that were differentially abundant when comparing gastric tissues from H. pylori-infected animals with tissues from uninfected animals. Liquid chromatography-tandem mass spectrometry analysis of lipid extracts from homogenized gastric tissues provided additional supportive evidence for the identification of several differentially abundant lipids. Sixteen of the differentially abundant lipids were localized mainly to the gastric corpus in stomachs from uninfected animals and were markedly reduced in abundance in stomachs from H. pylori-infected animals with severe disease (atrophic gastritis and dysplasia or gastric cancer). These findings indicate that H. pylori infection can lead to alterations in gastric lipid composition and constitute a new approach for identifying biomarkers of gastric atrophy and premalignant changes. IMPORTANCE H. pylori colonization of the stomach triggers a cascade of gastric alterations that can potentially culminate in stomach cancer. The molecular alterations that occur in gastric tissue prior to development of stomach cancer are not well understood. We demonstrate here that H. pylori-induced premalignant changes in the stomach are accompanied by extensive alterations in gastric lipid composition. These alterations are predicted to have important functional consequences relevant to H. pylori-host interactions and the pathogenesis of gastric cancer.


Asunto(s)
Gastritis Atrófica/microbiología , Infecciones por Helicobacter/patología , Helicobacter pylori , Neoplasias Gástricas/etiología , Animales , Modelos Animales de Enfermedad , Gastritis Atrófica/patología , Gerbillinae , Metabolismo de los Lípidos , Masculino , Estómago/patología
4.
J Vis Exp ; (147)2019 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-31132072

RESUMEN

A competitive index is a common method used to assess bacterial fitness and/or virulence. The utility of this approach is exemplified by its ease to perform and its ability to standardize the fitness of many strains to a wild-type organism. The technique is limited, however, by available phenotypic markers and the number of strains that can be assessed simultaneously, creating the need for a great number of replicate experiments. Concurrent with large numbers of experiments, the labor and material costs for quantifying bacteria based on phenotypic markers are not insignificant. To overcome these negative aspects while retaining the positive aspects, we have developed a molecular-based approach to directly quantify microorganisms after engineering genetic markers onto bacterial chromosomes. Unique, 25 base pair DNA barcodes were inserted at an innocuous locus on the chromosome of wild-type and mutant strains of Salmonella. In vitro competition experiments were performed using inocula consisting of pooled strains. Following the competition, the absolute numbers of each strain were quantified using digital PCR and the competitive indices for each strain were calculated from those values. Our data indicate that this approach to quantifying Salmonella is extremely sensitive, accurate, and precise for detecting both highly abundant (high fitness) and rare (low fitness) microorganisms. Additionally, this technique is easily adaptable to nearly any organism with chromosomes capable of modification, as well as to various experimental designs that require absolute quantification of microorganisms.


Asunto(s)
Reacción en Cadena de la Polimerasa/métodos , Salmonella/fisiología , Técnicas Bacteriológicas , Cromosomas Bacterianos , Aptitud Genética , Marcadores Genéticos , Salmonella/genética
5.
Sci Rep ; 7(1): 15083, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29118452

RESUMEN

The PhoPQ two-component regulatory system coordinates the response of Salmonella enterica serovar Typhimurium to diverse environmental challenges encountered during infection of hosts, including changes in Mg2+ concentrations, pH, and antimicrobial peptides. Moreover, PhoPQ-dependent regulation of gene expression promotes intracellular survival of Salmonella in macrophages, and contributes to the resistance of this pathogen to reactive nitrogen species (RNS) generated from the nitric oxide produced by the inducible nitric oxide (NO) synthase of macrophages. We report here that Salmonella strains with mutations of phoPQ are hypersensitive to killing by RNS generated in vitro. The increased susceptibility of ∆phoQ Salmonella to RNS requires molecular O2 and coincides with the nitrotyrosine formation, the oxidation of [4Fe-4S] clusters of dehydratases, and DNA damage. Mutations of respiratory NADH dehydrogenases prevent nitrotyrosine formation and abrogate the cytotoxicity of RNS against ∆phoQ Salmonella, presumably by limiting the formation of peroxynitrite (ONOO-) arising from the diffusion-limited reaction of exogenous NO and endogenous superoxide (O2•-) produced in the electron transport chain. The mechanism underlying PhoPQ-mediated resistance to RNS is linked to the coordination of Mg2+ homeostasis through the PhoPQ-regulated MgtA transporter. Collectively, our investigations are consistent with a model in which PhoPQ-dependent Mg2+ homeostasis protects Salmonella against nitrooxidative stress.


Asunto(s)
Homeostasis , Magnesio/metabolismo , Estrés Oxidativo , Especies de Nitrógeno Reactivo/metabolismo , Salmonella typhimurium/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno , Macrófagos/microbiología , Viabilidad Microbiana/genética , Mutación , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/fisiología
6.
Front Microbiol ; 7: 1397, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27656169

RESUMEN

The Lyme disease spirochete Borrelia burgdorferi encounters a wide range of environmental conditions as it cycles between ticks of the genus Ixodes and its various mammalian hosts. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are potent antimicrobial molecules generated during the innate immune response to infection, however, it is unclear whether ROS and RNS pose a significant challenge to B. burgdorferi in vivo. In this study, we screened a library of B. burgdorferi strains with mutations in DNA repair genes for increased susceptibility to ROS or RNS in vitro. Strains with mutations in the methyl-directed mismatch repair gene mutS1 are hypersensitive to killing by ROS, while strains lacking the nucleotide excision repair (NER) gene uvrB show increased susceptibility to both ROS and RNS. Therefore, mutS1-deficient and uvrB-deficient strains were compared for their ability to complete their infectious cycle in Swiss Webster mice and I. scapularis ticks to help identify sites of oxidative and nitrosative stresses encountered by B. burgdorferi in vivo. Both mutS1 and uvrB were dispensable for infection of mice, while uvrB promoted the survival of spirochetes in I. scapularis ticks. The decreased survival of uvrB-deficient B. burgdorferi was associated with the generation of RNS in I. scapularis midguts and salivary glands during feeding. Collectively, these data suggest that B. burgdorferi must withstand cytotoxic levels of RNS produced during infection of I. scapularis ticks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA