Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Oecologia ; 193(4): 867-877, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32809053

RESUMEN

Bryophytes are a diverse plant group and are functionally different from vascular plants. Yet, their peculiarities are rarely considered in the theoretical frameworks for plants. Currently, we lack information about the magnitude and the importance of intraspecific variability in the ecophysiology of bryophytes and how these might translate to local adaptation-a prerequisite for adaptive evolution. Capitalizing on two ecologically distinct (hummock and hollow) phenotypes of Sphagnum magellanicum, we explored the magnitude and pattern of intraspecific variability in this species and asked whether the environmental-mediated changes in shoot and physiological traits are due to phenotypic plasticity or local adaptation. Size, pigmentation, and habitat type that distinguished the phenotypes in the field did not influence the trait responses under a transplant and factorial experiment. In addition, the magnitude and pattern of trait variability (e.g., branch, stem and capitulum mass) changed with the treatments, which suggest that trait responses were due largely to phenotypic plasticity. The trait responses also suggest that the ecophysiological needs for mosses to grow in clumps, where they maintain a uniform growth may have an overriding effect over the potential for a fixed adaptive response to environmental heterogeneity, which would constrain local adaptation. We conclude that extending the trait-based framework to mosses or making comparisons between mosses and vascular plants under any theoretical framework would only be meaningful to the extent that growth form and dispersal strategies are considered.


Asunto(s)
Sphagnopsida , Aclimatación , Adaptación Fisiológica , Ecosistema , Fenotipo
2.
Mol Biol Evol ; 30(8): 1929-39, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23686659

RESUMEN

The masking hypothesis predicts that selection is more efficient in haploids than in diploids, because dominant alleles can mask the deleterious effects of recessive alleles in diploids. However, gene expression breadth and noise can potentially counteract the effect of masking on the rate at which genes evolve. Land plants are ideal to ask whether masking, expression breadth, or expression noise dominate in their influence on the rate of molecular evolution, because they have a biphasic life cycle in which the duration and complexity of the haploid and diploid phase varies among organisms. Here, we generate and compile genome-wide gene expression, sequence divergence, and polymorphism data for Arabidopsis thaliana and for the moss Funaria hygrometrica to show that the evolutionary rates of haploid- and diploid-specific genes contradict the masking hypothesis. Haploid-specific genes do not evolve more slowly than diploid-specific genes in either organism. Our data suggest that gene expression breadth influence the evolutionary rate of phase-specific genes more strongly than masking. Our observations have implications for the role of haploid life stages in the purging of deleterious mutations, as well as for the evolution of ploidy.


Asunto(s)
Briófitas/genética , Diploidia , Haploidia , Magnoliopsida/genética , Selección Genética , Animales , Evolución Biológica , Briófitas/crecimiento & desarrollo , Evolución Molecular , Femenino , Estadios del Ciclo de Vida , Magnoliopsida/crecimiento & desarrollo , Masculino , Polimorfismo Genético
3.
Ecol Evol ; 5(1): 229-42, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25628880

RESUMEN

Bryophytes dominate some ecosystems despite their extraordinary sensitivity to habitat quality. Nevertheless, some species behave differently across various regions. The existence of local adaptations is questioned by a high dispersal ability, which is thought to redistribute genetic variability among populations. Although Sphagnum warnstorfii is an important ecosystem engineer in fen peatlands, the causes of its rather wide niche along the pH/calcium gradient are poorly understood. Here, we studied the genetic variability of its global populations, with a detailed focus on the wide pH/calcium gradient in Central Europe. Principal coordinates analysis of 12 polymorphic microsatellite loci revealed a significant gradient coinciding with water pH, but independent of geography; even samples from the same fens were clearly separated along this gradient. However, most of the genetic variations remained unexplained, possibly because of the introgression from phylogenetically allied species. This explanation is supported by the small heterogeneous cluster of samples that appeared when populations morphologically transitional to S. subnites, S. rubellum, or S. russowii were included into the analysis. Alternatively, this unexplained variation might be attributed to a legacy of glacial refugia with recently dissolved ecological and biogeographic consequences. Isolation by distance appeared at the smallest scale only (up to 43 km). Negative spatial correlations occurred more frequently, mainly at long distances (up to 950 km), implying a genetic similarity among samples which are very distant geographically. Our results confirm the high dispersal ability of peatmosses, but simultaneously suggested that their ability to cope with a high pH/calcium level is at least partially determined genetically, perhaps via specific physiological mechanisms or a hummock-forming ability.

4.
Genome Biol Evol ; 6(5): 1238-52, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24879432

RESUMEN

In diploid organisms, selfing reduces the efficiency of selection in removing deleterious mutations from a population. This need not be the case for all organisms. Some plants, for example, undergo an extreme form of selfing known as intragametophytic selfing, which immediately exposes all recessive deleterious mutations in a parental genome to selective purging. Here, we ask how effectively deleterious mutations are removed from such plants. Specifically, we study the extent to which deleterious mutations accumulate in a predominantly selfing and a predominantly outcrossing pair of moss species, using genome-wide transcriptome data. We find that the selfing species purge significantly more nonsynonymous mutations, as well as a greater proportion of radical amino acid changes which alter physicochemical properties of amino acids. Moreover, their purging of deleterious mutation is especially strong in conserved regions of protein-coding genes. Our observations show that selfing need not impede but can even accelerate the removal of deleterious mutations, and do so on a genome-wide scale.


Asunto(s)
Briófitas/genética , Haploidia , Mutación , Secuencia de Bases , Evolución Biológica , Secuencia Conservada , Diploidia , Secuenciación de Nucleótidos de Alto Rendimiento , Polinización , Selección Genética , Autofecundación , Transcriptoma
5.
Gigascience ; 3: 17, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25625010

RESUMEN

The 1,000 plants (1KP) project is an international multi-disciplinary consortium that has generated transcriptome data from over 1,000 plant species, with exemplars for all of the major lineages across the Viridiplantae (green plants) clade. Here, we describe how to access the data used in a phylogenomics analysis of the first 85 species, and how to visualize our gene and species trees. Users can develop computational pipelines to analyse these data, in conjunction with data of their own that they can upload. Computationally estimated protein-protein interactions and biochemical pathways can be visualized at another site. Finally, we comment on our future plans and how they fit within this scalable system for the dissemination, visualization, and analysis of large multi-species data sets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA