Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 20(9): e3001797, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36173939

RESUMEN

Falling asleep at the wrong time can place an individual at risk of immediate physical harm. However, not sleeping degrades cognition and adaptive behavior. To understand how animals match sleep need with environmental demands, we used live-brain imaging to examine the physiological response properties of the dorsal fan-shaped body (dFB) following interventions that modify sleep (sleep deprivation, starvation, time-restricted feeding, memory consolidation) in Drosophila. We report that dFB neurons change their physiological response-properties to dopamine (DA) and allatostatin-A (AstA) in response to different types of waking. That is, dFB neurons are not simply passive components of a hard-wired circuit. Rather, the dFB neurons intrinsically regulate their response to the activity from upstream circuits. Finally, we show that the dFB appears to contain a memory trace of prior exposure to metabolic challenges induced by starvation or time-restricted feeding. Together, these data highlight that the sleep homeostat is plastic and suggests an underlying mechanism.


Asunto(s)
Dopamina , Inanición , Animales , Drosophila , Neuronas , Plásticos , Sueño , Privación de Sueño
2.
J Am Chem Soc ; 146(32): 22787-22796, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39093837

RESUMEN

Efficient detection of chemical analytes using fluorescence-based sensors necessitates an in-depth understanding of the physical interaction between the analyte molecules and the sensor films. This study explores the interplay between the thermal properties of a series of triphenylamine-centered fluorescent dendrimers with different glass transition temperatures (Tg) for detecting nitroaromatic explosives. When exposed to 4-nitrotoluene (pNT) vapors, biphasic diffusion kinetics were observed for all the dendrimers, corresponding to Super Case II kinetics, suggesting rapid film swelling during initial analyte uptake. The diffusion kinetics were further analyzed using a diffusion-relaxation model, where a strong Tg dependence was observed for both the initial concentration-driven diffusion phase and the slower film relaxation phase. Additionally, a difference in kinetics between analyte uptake and release was observed. The photoluminescence (PL) kinetics also showed a Tg dependence, with more efficient PL recovery observed for films composed of dendrimers that had a lower Tg. Rapid quenching of over 40% with little PL recovery was seen in the dendrimer with the highest Tg (107 °C), while a smaller quench with efficient PL recovery was observed in the dendrimer that had a Tg close to room temperature. The results highlight the critical role of the thermal properties of sensor films in achieving rapid and sensitive detection.

3.
PLoS Biol ; 19(6): e3001324, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34191802

RESUMEN

Circadian rhythms help animals synchronize motivated behaviors to match environmental demands. Recent evidence indicates that clock neurons influence the timing of behavior by differentially altering the activity of a distributed network of downstream neurons. Downstream circuits can be remodeled by Hebbian plasticity, synaptic scaling, and, under some circumstances, activity-dependent addition of cell surface receptors; the role of this receptor respecification phenomena is not well studied. We demonstrate that high sleep pressure quickly reprograms the wake-promoting large ventrolateral clock neurons to express the pigment dispersing factor receptor (PDFR). The addition of this signaling input into the circuit is associated with increased waking and early mating success. The respecification of PDFR in both young and adult large ventrolateral neurons requires 2 dopamine (DA) receptors and activation of the transcriptional regulator nejire (cAMP response element-binding protein [CREBBP]). These data identify receptor respecification as an important mechanism to sculpt circuit function to match sleep levels with demand.


Asunto(s)
Adaptación Psicológica , Conducta Animal/fisiología , Relojes Biológicos/fisiología , Drosophila melanogaster/fisiología , Sueño/fisiología , Vigilia/fisiología , Envejecimiento/fisiología , Animales , Proteínas de Drosophila/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Conducta Sexual Animal , Factores de Transcripción p300-CBP/metabolismo
4.
Plant J ; 111(5): 1238-1251, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35751152

RESUMEN

Fresh berries are a popular and important component of the human diet. The demand for high-quality berries and sustainable production methods is increasing globally, challenging breeders to develop modern berry cultivars that fulfill all desired characteristics. Since 1994, research projects have characterized genetic resources, developed modern tools for high-throughput screening, and published data in publicly available repositories. However, the key findings of different disciplines are rarely linked together, and only a limited range of traits and genotypes has been investigated. The Horizon2020 project BreedingValue will address these challenges by studying a broader panel of strawberry, raspberry and blueberry genotypes in detail, in order to recover the lost genetic diversity that has limited the aroma and flavor intensity of recent cultivars. We will combine metabolic analysis with sensory panel tests and surveys to identify the key components of taste, flavor and aroma in berries across Europe, leading to a high-resolution map of quality requirements for future berry cultivars. Traits linked to berry yields and the effect of environmental stress will be investigated using modern image analysis methods and modeling. We will also use genetic analysis to determine the genetic basis of complex traits for the development and optimization of modern breeding technologies, such as molecular marker arrays, genomic selection and genome-wide association studies. Finally, the results, raw data and metadata will be made publicly available on the open platform Germinate in order to meet FAIR data principles and provide the basis for sustainable research in the future.


Asunto(s)
Fragaria , Frutas , Fragaria/genética , Frutas/genética , Frutas/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Fitomejoramiento , Desarrollo Sostenible
5.
Anal Bioanal Chem ; 415(7): 1357-1369, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36705732

RESUMEN

Despite its critical role in neurodevelopment and brain function, vitamin D (vit-D) homeostasis, metabolism, and kinetics within the central nervous system remain largely undetermined. Thus, it is of critical importance to establish an accurate, highly sensitive, and reproducible method to quantitate vit-D in brain tissue. Here, we present a novel liquid chromatography tandem mass spectrometry (LC-MS/MS) method and for the first time, demonstrate detection of seven major vit-D metabolites in brain tissues of C57BL/6J wild-type mice, namely 1,25(OH)2D3, 3-epi-1,25(OH)2D3, 1,25(OH)2D2, 25(OH)D3, 25(OH)D2, 24,25(OH)2D3, and 24,25(OH)2D2. Chromatographic separation was achieved on a pentaflurophenyl column with 3 mM ammonium formate water/methanol [A] and 3 mM ammonium formate methanol/isopropanol [B] mobile phase components. Detection was by positive ion electrospray tandem mass spectrometry with the EVOQ elite triple quadrupole mass spectrometer with an Advance ultra-high-performance liquid chromatograph and online extraction system. Calibration standards of each metabolite prepared in brain matrices were used to validate the detection range, precision, accuracy, and recovery. Isotopically labelled analogues, 1,25(OH)2D3-d3, 25(OH)D3-c5, and 24,25(OH)2D3-d6, served as the internal standards for the closest molecular-related metabolite in all measurements. Standards between 1 fg/mL and 10 ng/mL were injected with a resulting linear range between 0.001 and 1 ng, with an LLOD and LLOQ of 1 pg/mL and 12.5 pg/mL, respectively. The intra-/inter-day precision and accuracy for measuring brain vit-D metabolites ranged between 0.12-11.53% and 0.28-9.11%, respectively. Recovery in acetonitrile ranged between 99.09 and 106.92% for all metabolites. Collectively, the sensitivity and efficiency of our method supersedes previously reported protocols used to measure vit-D and to our knowledge, the first protocol to reveal the abundance of 25(OH)D2, 1,25(OH)D2, and 24,25(OH)2D2, in brain tissue of any species. This technique may be important in supporting the future advancement of pre-clinical research into the function of vit-D in neurophysiological and neuropsychiatric disorders, and neurodegeneration.


Asunto(s)
Metanol , Espectrometría de Masas en Tándem , Animales , Ratones , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Ratones Endogámicos C57BL , Vitamina D , Vitaminas , Encéfalo
6.
Phys Chem Chem Phys ; 25(35): 23867-23878, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37642159

RESUMEN

The strategy of using a bulk-heterojunction light-absorbing layer has led to the most efficient organic solar cells. However, optimising the blend morphology to maximise light absorption, charge generation and extraction can be challenging. Homojunction devices containing a single component have the potential to overcome the challenges associated with bulk heterojunction films. A strategy towards this goal is to increase the dielectric constant of the organic semiconductor to ≈10, which in principle would lead to free charge carrier generation upon photoexcitation. However, the factors that affect the thin film dielectric constants are still not well understood. In this work we report an organic semiconductor material that can be solution processed or vacuum evaporated to form good quality thin films to explore the effect of chromophore structure and film morphology on the dielectric constant and other optoelectronic properties. 2,2'-[(4,4,4',4'-Tetrakis{2-[2-methoxyethoxy]ethyl}-4H,4'H-{2,2'-bi[cyclo-penta[2,1-b:3,4-b']dithiophene]}-6,6'-diyl)bis(methaneylylidene)]dimalononitrile [D(CPDT-DCV)] was designed to have high electron-affinity end groups and low ionisation-potential central moieties. It can be processed from solution or be thermally evaporated, with the film morphology changing from face-on to a herringbone arrangement upon solvent or thermal annealing. The glycol solubilising groups led to the static dielectric constant (taken from capacitance measurements) of the films to be between 6 and 7 (independent of processing conditions), while the optical frequency dielectric constant depended on the processing conditions. The less ordered solution processed film was found to have the lowest optical frequency dielectric constant of 3.6 at 2.0 × 1014 Hz, which did not change upon annealing. In contrast, the more ordered evaporated film had an optical frequency dielectric constant 20% higher at 4.2 and thermal annealing further increased it to 4.5, which is amongst the highest reported for an organic semiconductor at that frequency. Finally, the more ordered evaporated films had more balanced charge transport, which did not change upon annealing.

7.
J Neurosci ; 41(24): 5173-5189, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-33931552

RESUMEN

We developed a method for single-cell resolution longitudinal bioluminescence imaging of PERIOD (PER) protein and TIMELESS (TIM) oscillations in cultured male adult Drosophila brains that captures circadian circuit-wide cycling under simulated day/night cycles. Light input analysis confirms that CRYPTOCHROME (CRY) is the primary circadian photoreceptor and mediates clock disruption by constant light (LL), and that eye light input is redundant to CRY; 3-h light phase delays (Friday) followed by 3-h light phase advances (Monday morning) simulate the common practice of staying up later at night on weekends, sleeping in later on weekend days then returning to standard schedule Monday morning [weekend light shift (WLS)]. PER and TIM oscillations are highly synchronous across all major circadian neuronal subgroups in unshifted light schedules for 11 d. In contrast, WLS significantly dampens PER oscillator synchrony and rhythmicity in most circadian neurons during and after exposure. Lateral ventral neuron (LNv) oscillations are the first to desynchronize in WLS and the last to resynchronize in WLS. Surprisingly, the dorsal neuron group-3 (DN3s) increase their within-group synchrony in response to WLS. In vivo, WLS induces transient defects in sleep stability, learning, and memory that temporally coincide with circuit desynchrony. Our findings suggest that WLS schedules disrupt circuit-wide circadian neuronal oscillator synchrony for much of the week, thus leading to observed behavioral defects in sleep, learning, and memory.


Asunto(s)
Encéfalo/fisiopatología , Ritmo Circadiano/fisiología , Criptocromos/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas del Ojo/metabolismo , Red Nerviosa/fisiopatología , Proteínas Circadianas Period/metabolismo , Animales , Encéfalo/metabolismo , Drosophila , Aprendizaje/fisiología , Masculino , Memoria/fisiología , Red Nerviosa/metabolismo , Sueño/fisiología
8.
BMC Bioinformatics ; 23(1): 214, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35668357

RESUMEN

BACKGROUND: Plant breeding and crop research rely on experimental phenotyping trials. These trials generate data for large numbers of traits and plant varieties that needs to be captured efficiently and accurately to support further research and downstream analysis. Traditionally scored by hand, phenotypic data is nowadays collected using spreadsheets or specialized apps. While many solutions exist, which increase efficiency and reduce errors, none offer the same familiarity as printed field plans which have been used for decades and offer an intuitive overview over the trial setup, previously recorded data and plots still requiring scoring. RESULTS: We introduce GridScore which utilizes cutting-edge web technologies to reproduce the familiarity of printed field plans while enhancing the phenotypic data collection process by adding advanced features like georeferencing, image tagging and speech recognition. GridScore is a cross-platform open-source plant phenotyping app that combines barcode-based systems with a guided data collection approach while offering a top-down view onto the data collected in a field layout. GridScore is compared to existing tools across a wide spectrum of criteria including support for barcodes, multiple platforms, and visualizations. CONCLUSION: Compared to its competition, GridScore shows strong performance across the board offering a complete manual phenotyping experience.


Asunto(s)
Productos Agrícolas , Fitomejoramiento , Recolección de Datos , Fenotipo
9.
PLoS Biol ; 17(3): e3000199, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30917116

RESUMEN

The balance of sleep and wake is plastic and changes to meet environmental demands. Mechanisms that allow an animal to suppress sleep and maintain waking in potentially adverse situations could serve adaptive functions in evolution. The fruit fly, Drosophila melanogaster, is well poised as a system in which to explore these questions. The environment changes sleep and wake in flies, e.g., starvation induces waking in Drosophila as it does in many animals. Further, the sophisticated neurobiological toolkit available to Drosophila researchers gives the fly a great advantage as a system to investigate the precise neurobiological mechanisms underlying these adaptive changes. In a paper in this issue of PLOS Biology, Yurgel and colleagues elegantly exploit the advantages of the Drosophila model to map starvation-induced wakefulness to a single pair of peptidergic neurons and their partners.


Asunto(s)
Inanición , Vigilia , Animales , Drosophila melanogaster , Neuronas , Sueño
10.
J Fish Biol ; 100(5): 1158-1170, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35174488

RESUMEN

The Patagonian toothfish, Dissostichus eleginoides, is one of the largest predatory fishes inhabiting Southern Ocean waters spanning the Antarctic Polar Front (APF), a prominent biogeographic boundary restricting gene flow and driving species divergence between Antarctic and sub-Antarctic waters. In the light of emerging threats to toothfish conservation and sustainability, this study investigated genetic [mtDNA sequences and genome wide nuclear single nucleotide polymorphisms (SNPs)] and morphological data to critically evaluate the taxonomic status of toothfish north (Chile and Patagonian shelf) and south (South Georgia and South Sandwich Islands) of the APF. mtDNA revealed reciprocally monophyletic lineages on either side of the APF with coalescent analysis indicating these diverged during the Pleistocene. Integration with data from other sources suggests the Chilean/Patagonian lineage is endemic. SNP analysis confirmed restricted nuclear gene flow between both groups and revealed a consensus suite of positive outlier SNPs compatible with adaptive divergence between these groups. Finally, several morphological features permit unequivocal assignment of individuals to either of the clades. Based on the genetic, phenotypic and ecological divergence, the authors propose that toothfish on either side of the APF be recognised as distinct species, with the name D. eleginoides used for toothfish occurring in South American waters north of the APF and toothfish south of the APF being classified using the new name D. australis reflecting their southern distribution.


Asunto(s)
Perciformes , Animales , Regiones Antárticas , ADN Mitocondrial/genética , Genoma , Genómica , Perciformes/genética
11.
J Evol Biol ; 34(9): 1352-1361, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34165857

RESUMEN

In polygamous species, the mode of sperm storage in females influences evolution of sperm quantitative and qualitative traits because it provides the arena for sperm competition, cryptic female choice and fertilization processes. In this study, we compared ejaculate traits of two squid species, Heterololigo bleekeri and Loligo reynaudii. Both species show dimorphic sperm traits associated with alternative reproductive tactics where consort and sneaker males transfer sperm to different storage sites within a female (on the oviduct and near the mouth, respectively). Due to differences in reproductive behaviours and sperm placement, sperm competition risk is expected to be higher in sneakers than in consorts of both species and higher overall in L. reynaudii. Our results demonstrate that the instantaneous number of released sperm is adjusted to the expected sperm competition risk via an elaborate sperm package. Consort sperm are similar in size; however, sneaker sperm have a significantly longer flagellum in H. bleekeri than in L. reynaudii, most likely due to intra-tactic conflicts associated with sperm storage conditions. From consideration of the different mating tactics, we suggest that while levels of sperm competition determine quantitative traits, sperm quality traits are determined more by the mode of sperm storage and fertilization.


Asunto(s)
Decapodiformes , Conducta Sexual Animal , Animales , Femenino , Masculino , Reproducción , Recuento de Espermatozoides , Espermatozoides
12.
Curr Oncol Rep ; 23(11): 123, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34448972

RESUMEN

PURPOSE OF REVIEW: Opioids are administered to cancer patients although concerns have been raised that they may promote tumour growth or metastasis owing to their ability to suppress anti-cancer immunity. Tramadol has been reported to preserve or promote the immune response and may therefore be preferred to other opioids in cancer patients. We reviewed the literature documenting the immunomodulatory effects of tramadol. RECENT FINDINGS: Recent clinical evidence appears to confirm that tramadol possesses anti-inflammatory properties, and preserves some signalling cascades of the immune system relevant to anti-cancer defence. Tramadol is reported to promote or preserve immunity including natural killer cell activity which is important in anti-cancer defences.


Asunto(s)
Agentes Inmunomoduladores/farmacología , Tramadol/inmunología , Tramadol/farmacología , Animales , Antiinflamatorios no Esteroideos/inmunología , Antiinflamatorios no Esteroideos/farmacología , Humanos , Sistema Inmunológico/efectos de los fármacos , Agentes Inmunomoduladores/inmunología
13.
J Cell Mol Med ; 24(6): 3724-3738, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32065471

RESUMEN

In solid tumours, elevated interstitial fluid pressure (osmotic and hydrostatic pressure) is a barrier to drug delivery and correlates with poor prognosis. Glioblastoma (GBM) further experience compressive force when growing within a space limited by the skull. Caveolae are proposed to play mechanosensing roles, and caveola-forming proteins are overexpressed in GBM. We asked whether caveolae mediate the GBM response to osmotic pressure. We evaluated in vitro the influence of spontaneous or experimental down-regulation of caveola-forming proteins (caveolin-1, CAVIN1) on the proteolytic profile and invasiveness of GBM cells in response to osmotic pressure. In response to osmotic pressure, GBM cell lines expressing caveola-forming proteins up-regulated plasminogen activator (uPA) and/or matrix metalloproteinases (MMPs), some EMT markers and increased their in vitro invasion potential. Down-regulation of caveola-forming proteins impaired this response and prevented hyperosmolarity-induced mRNA expression of the water channel aquaporin 1. CRISPR ablation of caveola-forming proteins further lowered expression of matrix proteases and EMT markers in response to hydrostatic pressure, as a model of mechanical force. GBM respond to pressure by increasing matrix-degrading enzyme production, mesenchymal phenotype and invasion. Caveola-forming proteins mediate, at least in part, the pro-invasive response of GBM to pressure. This may represent a novel target in GBM treatment.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Caveolas/metabolismo , Caveolina 1/metabolismo , Glioblastoma/metabolismo , Presión Hidrostática , Ósmosis , Acuaporina 1/genética , Acuaporina 1/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/ultraestructura , Caveolas/ultraestructura , Línea Celular Tumoral , Matriz Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , Glioblastoma/ultraestructura , Humanos , Invasividad Neoplásica
14.
Bioinformatics ; 35(20): 4147-4155, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30903186

RESUMEN

MOTIVATION: Modern genomic breeding methods rely heavily on very large amounts of phenotyping and genotyping data, presenting new challenges in effective data management and integration. Recently, the size and complexity of datasets have increased significantly, with the result that data are often stored on multiple systems. As analyses of interest increasingly require aggregation of datasets from diverse sources, data exchange between disparate systems becomes a challenge. RESULTS: To facilitate interoperability among breeding applications, we present the public plant Breeding Application Programming Interface (BrAPI). BrAPI is a standardized web service API specification. The development of BrAPI is a collaborative, community-based initiative involving a growing global community of over a hundred participants representing several dozen institutions and companies. Development of such a standard is recognized as critical to a number of important large breeding system initiatives as a foundational technology. The focus of the first version of the API is on providing services for connecting systems and retrieving basic breeding data including germplasm, study, observation, and marker data. A number of BrAPI-enabled applications, termed BrAPPs, have been written, that take advantage of the emerging support of BrAPI by many databases. AVAILABILITY AND IMPLEMENTATION: More information on BrAPI, including links to the specification, test suites, BrAPPs, and sample implementations is available at https://brapi.org/. The BrAPI specification and the developer tools are provided as free and open source.


Asunto(s)
Fitomejoramiento , Programas Informáticos , Interfaz Usuario-Computador , Genómica
15.
J Neurogenet ; 34(1): 83-91, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31997683

RESUMEN

Sleep plays an important role in regulating plasticity. In Drosophila, the relationship between sleep and learning and memory has primarily focused on mushroom body dependent operant-learning assays such as aversive phototaxic suppression and courtship conditioning. In this study, sleep was increased in the classic mutant rutabaga (rut2080) and dunce (dnc1) by feeding them the GABA-A agonist gaboxadol (Gab). Performance was evaluated in each mutant in response to social enrichment and place learning, tasks that do not require the mushroom body. Gab-induced sleep did not restore behavioral plasticity to either rut2080 or dnc1 mutants following social enrichment. However, increased sleep restored place learning to rut2080 mutants. These data extend the positive effects of enhanced sleep to place learning and highlight the utility of Gab for elucidating the beneficial effects of sleep on brain functioning.


Asunto(s)
Adenilil Ciclasas/genética , Proteínas de Drosophila/genética , Aprendizaje/fisiología , Sueño/fisiología , Animales , Animales Modificados Genéticamente , Drosophila melanogaster/fisiología , Mutación
16.
Theor Appl Genet ; 133(9): 2567-2582, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32506274

RESUMEN

KEY MESSAGE: Historical malting quality data was collated from UK national and recommended list trial data and used in a GWAS. 25 QTL were identified, with the majority from spring barley cultivar sets. In Europe, the most economically significant use of barley is the production of malt for use in the brewing and distilling industries. As such, selection for traits related to malting quality is of great commercial interest. In order to study the genetic basis of variation for malting quality traits in UK cultivars, a historical set of trial data was collated from national and recommended list trials from the period 1988 to 2016. This data was used to estimate variety means for 20 quality related traits in 451 spring barley cultivars, and 407 winter cultivars. Genotypes for these cultivars were generated using iSelect 9k and 50k genotyping platforms, and a genome wide association scan performed to identify malting quality quantitative trait loci (QTL). 24 QTL were identified in spring barley cultivars, and 2 from the winter set. A number of these correspond to known malting quality related genes but the remainder represents novel genetic variation that is accessible to breeders for the genetic improvement of new cultivars.


Asunto(s)
Mapeo Cromosómico , Hordeum/genética , Sitios de Carácter Cuantitativo , Estudios de Asociación Genética , Genotipo , Fenotipo , Fitomejoramiento , Reino Unido
17.
J Fish Biol ; 96(6): 1434-1443, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32154919

RESUMEN

Two geographically nonoverlapping species are currently described within the sparid genus Spondyliosoma: Spondyliosoma cantharus (Black Seabream) occurring across Mediterranean and eastern Atlantic waters from NW Europe to Angola and S. emarginatum (Steentjie) considered endemic to southern Africa. To address prominent knowledge gaps this study investigated range-wide phylogeographic structure across both species. Mitochondrial DNA sequences revealed deep phylogeographic structuring with four regionally partitioned reciprocally monophyletic clades, a Mediterranean clade and three more closely related Atlantic clades [NE Atlantic, Angola and South Africa (corresponding to S. emarginatum)]. Divergence and distribution of the lineages reflects survival in, and expansion from, disjunct glacial refuge areas. Cytonuclear differentiation of S. emarginatum supports its validity as a distinct species endemic to South African waters. However, the results also indicate that S. cantharus may be a cryptic species complex wherein the various regional lineages represent established/incipient species. A robust multilocus genetic assessment combining morphological data and detailing interactions among lineages is needed to determine the full diversity within Spondyliosoma and the most adequate biological and taxonomic status.


Asunto(s)
Variación Genética , Perciformes/clasificación , África , Animales , Océano Atlántico , ADN Mitocondrial/genética , Europa (Continente) , Haplotipos , Mar Mediterráneo , Perciformes/genética , Filogenia , Filogeografía , Análisis de Secuencia de ADN , Especificidad de la Especie
18.
J Fish Biol ; 96(3): 795-805, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32031244

RESUMEN

Two sister species of horse mackerel (Trachurus trachurus and T. capensis) are described that are intensively harvested in East Atlantic waters. To address long-standing uncertainties as to their respective geographical ranges, overlap and intraspecific population structure this study combined genetic (mitochondrial DNA and microsatellite) analysis and targeted sampling of the hitherto understudied West African coast. mtDNA revealed two reciprocally monophyletic clades corresponding to each species with interspecies nuclear differentiation supported by FST values. The T. trachurus clade was found across the north-east Atlantic down to Ghana but was absent from Angolan and South African samples. The T. capensis clade was found only in South Africa, Angola and a single Ghanaian individual. This pattern suggests that both species may overlap in the waters around Ghana. The potential for cryptic hybridization and/or indiscriminate harvesting of both species in the region is discussed. For T. capensis mtDNA supports high gene flow across the Benguela upwelling system, which fits with the species' ecology. The data add to evidence of a lack of significant genetic structure throughout the range of T. trachurus though the assumption of demographic panmixia is cautioned against. For both species, resolution of stock recruitment heterogeneity relevant to fishery management, as well as potential hybridization, will require more powerful genomic analyses.


Asunto(s)
Demografía , Perciformes/clasificación , Perciformes/genética , África Austral , Animales , ADN Mitocondrial/genética , Flujo Génico , Genética de Población , Repeticiones de Microsatélite/genética
19.
Learn Mem ; 25(3): 122-128, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29449456

RESUMEN

Animals in a natural environment confront many sensory cues. Some of these cues bias behavioral decisions independent of experience, and action selection can reveal a stimulus-response (S-R) connection. However, in a changing environment it would be a benefit for an animal to update behavioral action selection based on experience, and learning might modify even strong S-R relationships. How animals use learning to modify S-R relationships is a largely open question. Three sensory stimuli, air, light, and gravity sources were presented to individual Drosophila melanogaster in both naïve and place conditioning situations. Flies were tested for a potential modification of the S-R relationships of anemotaxis, phototaxis, and negative gravitaxis by a contingency that associated place with high temperature. With two stimuli, significant S-R relationships were abandoned when the cue was in conflict with the place learning contingency. The role of the dunce (dnc) cAMP-phosphodiesterase and the rutabaga (rut) adenylyl cyclase were examined in all conditions. Both dnc1 and rut2080 mutant flies failed to display significant S-R relationships with two attractive cues, and have characteristically lower conditioning scores under most conditions. Thus, learning can have profound effects on separate native S-R relationships in multiple contexts, and mutation of the dnc and rut genes reveal complex effects on behavior.


Asunto(s)
Conducta Animal , Condicionamiento Operante , Aprendizaje Espacial , Memoria Espacial , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Aire , Animales , Animales Modificados Genéticamente , Aprendizaje por Asociación/fisiología , Conducta Animal/fisiología , Condicionamiento Operante/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Gravitación , Luz , Aprendizaje Espacial/fisiología , Memoria Espacial/fisiología
20.
FASEB J ; 31(12): 5208-5216, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28784632

RESUMEN

Opioids modulate the tumor microenvironment with potential functional consequences for tumor growth and metastasis. We evaluated the effects of morphine administration on the circulating proteolytic profile of tumor-free mice. Serum from morphine-treated (1 or 10 mg/kg, i.p. every 12 h) or saline-treated mice was collected at different time points and tested ex vivo in endothelial, lymphatic endothelial, and breast cancer cell migration assays. Serum from mice that were treated with 10 mg/kg morphine for 3 d displayed reduced chemotactic potential for endothelial and breast cancer cells, and elicited reduced cancer cell invasion through reconstituted basement membrane compared with serum from saline controls. This was associated with decreased circulating matrix metalloproteinase 9 (MMP-9) and increased circulating tissue inhibitor of metalloproteinase 1 (TIMP-1) and TIMP-3/4 as assessed by zymography and reverse zymography. By using quantitative RT-PCR, we confirmed morphine-induced alterations in MMP-9 and TIMP expression and identified organs, including the liver and spleen, in which these changes originated. Pharmacologic inhibition of MMP-9 abrogated the difference in chemotactic attraction between serum from saline-treated and morphine-treated mice, which indicated that reduced proteolytic ability mediated the decreased migration toward serum from morphine-treated mice. This novel mechanism may enable morphine administration to promote an environment that is less conducive to tumor growth, invasion, and metastasis.-Xie, N., Khabbazi, S., Nassar, Z. D., Gregory, K., Vithanage, T., Anand-Apte, B., Cabot, P. J., Sturgess, D., Shaw, P. N., Parat, M.-O. Morphine alters the circulating proteolytic profile in mice: functional consequences on cellular migration and invasion.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/metabolismo , Morfina/farmacología , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Inhibidor Tisular de Metaloproteinasa-3/metabolismo , Analgésicos Opioides/farmacología , Animales , Bovinos , Línea Celular , Línea Celular Tumoral , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Femenino , Metaloproteinasa 9 de la Matriz/genética , Ratones , Ratones Endogámicos BALB C , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Inhibidor Tisular de Metaloproteinasa-1/genética , Inhibidor Tisular de Metaloproteinasa-3/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA