Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cancer Cell Int ; 19: 346, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31889898

RESUMEN

BACKGROUND: Treatments that generate T cell-mediated immunity to a patient's unique neoantigens are the current holy grail of cancer immunotherapy. In particular, treatments that do not require cumbersome and individualized ex vivo processing or manufacturing processes are especially sought after. Here we report that AGI-134, a glycolipid-like small molecule, can be used for coating tumor cells with the xenoantigen Galα1-3Galß1-4GlcNAc (α-Gal) in situ leading to opsonization with pre-existing natural anti-α-Gal antibodies (in short anti-Gal), which triggers immune cascades resulting in T cell mediated anti-tumor immunity. METHODS: Various immunological effects of coating tumor cells with α-Gal via AGI-134 in vitro were measured by flow cytometry: (1) opsonization with anti-Gal and complement, (2) antibody-dependent cell-mediated cytotoxicity (ADCC) by NK cells, and (3) phagocytosis and antigen cross-presentation by antigen presenting cells (APCs). A viability kit was used to test AGI-134 mediated complement dependent cytotoxicity (CDC) in cancer cells. The anti-tumoral activity of AGI-134 alone or in combination with an anti-programmed death-1 (anti-PD-1) antibody was tested in melanoma models in anti-Gal expressing galactosyltransferase knockout (α1,3GT-/-) mice. CDC and phagocytosis data were analyzed by one-way ANOVA, ADCC results by paired t-test, distal tumor growth by Mantel-Cox test, C5a data by Mann-Whitney test, and single tumor regression by repeated measures analysis. RESULTS: In vitro, α-Gal labelling of tumor cells via AGI-134 incorporation into the cell membrane leads to anti-Gal binding and complement activation. Through the effects of complement and ADCC, tumor cells are lysed and tumor antigen uptake by APCs increased. Antigen associated with lysed cells is cross-presented by CD8α+ dendritic cells leading to activation of antigen-specific CD8+ T cells. In B16-F10 or JB/RH melanoma models in α1,3GT-/- mice, intratumoral AGI-134 administration leads to primary tumor regression and has a robust abscopal effect, i.e., it protects from the development of distal, uninjected lesions. Combinations of AGI-134 and anti-PD-1 antibody shows a synergistic benefit in protection from secondary tumor growth. CONCLUSIONS: We have identified AGI-134 as an immunotherapeutic drug candidate, which could be an excellent combination partner for anti-PD-1 therapy, by facilitating tumor antigen processing and increasing the repertoire of tumor-specific T cells prior to anti-PD-1 treatment.

2.
J Virol ; 85(13): 6353-68, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21507963

RESUMEN

The current standard of care for hepatitis C virus (HCV)-infected patients consists of lengthy treatment with interferon and ribavirin. To increase the effectiveness of HCV therapy, future regimens will incorporate multiple direct-acting antiviral (DAA) drugs. Recently, the HCV-encoded NS5A protein has emerged as a promising DAA target. Compounds targeting NS5A exhibit remarkable potency in vitro and demonstrate early clinical promise, suggesting that NS5A inhibitors could feature in future DAA combination therapies. Since the mechanisms through which these molecules operate are unknown, we have used NS5A inhibitors as tools to investigate their modes of action. Analysis of replicon-containing cells revealed dramatic phenotypic alterations in NS5A localization following treatment with NS5A inhibitors; NS5A was redistributed from the endoplasmic reticulum to lipid droplets. The NS5A relocalization did not occur in cells treated with other classes of HCV inhibitors, and NS5A-targeting molecules did not cause similar alterations in the localization of other HCV-encoded proteins. Time course analysis of the redistribution of NS5A revealed that the transfer of protein to lipid droplets was concomitant with the onset of inhibition, as judged by the kinetic profiles for these compounds. Furthermore, analysis of the kinetic profile of inhibition for a panel of test molecules permitted the separation of compounds into different kinetic classes based on their modes of action. Results from this approach suggested that NS5A inhibitors perturbed the function of new replication complexes, rather than acting on preformed complexes. Taken together, our data reveal novel biological consequences of NS5A inhibition, which may help enable the development of future assay platforms for the identification of new and/or different NS5A inhibitors.


Asunto(s)
Antivirales/farmacología , Retículo Endoplásmico/metabolismo , Imidazoles/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Antivirales/química , Carbamatos , Línea Celular Tumoral , Retículo Endoplásmico/ultraestructura , Hepacivirus/efectos de los fármacos , Hepacivirus/genética , Hepatocitos/ultraestructura , Hepatocitos/virología , Humanos , Imidazoles/química , Concentración 50 Inhibidora , Lípidos , Microscopía Confocal , Modelos Moleculares , Pirrolidinas , Replicón , Bibliotecas de Moléculas Pequeñas , Valina/análogos & derivados , Proteínas no Estructurales Virales/metabolismo , Replicación Viral
3.
Nat Med ; 26(6): 878-885, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32451495

RESUMEN

Programmed cell death 1 (PD-1) inhibitors have limited effect in pancreatic ductal adenocarcinoma (PDAC), underscoring the need to co-target alternative pathways. CXC chemokine receptor 4 (CXCR4) blockade promotes T cell tumor infiltration and is synergistic with anti-PD-1 therapy in PDAC mouse models. We conducted a phase IIa, open-label, two-cohort study to assess the safety, efficacy and immunobiological effects of the CXCR4 antagonist BL-8040 (motixafortide) with pembrolizumab and chemotherapy in metastatic PDAC (NCT02826486). The primary outcome was objective response rate (ORR). Secondary outcomes were overall survival (OS), disease control rate (DCR) and safety. In cohort 1, 37 patients with chemotherapy-resistant disease received BL-8040 and pembrolizumab. The DCR was 34.5% in the evaluable population (modified intention to treat, mITT; N = 29), including nine patients (31%) with stable disease and one patient (3.4%) with partial response. Median OS (mOS) was 3.3 months in the ITT population. Notably, in patients receiving study drugs as second-line therapy, the mOS was 7.5 months. BL-8040 increased CD8+ effector T cell tumor infiltration, decreased myeloid-derived suppressor cells (MDSCs) and further decreased circulating regulatory T cells. In cohort 2, 22 patients received BL-8040 and pembrolizumab with chemotherapy, with an ORR, DCR and median duration of response of 32%, 77% and 7.8 months, respectively. These data suggest that combined CXCR4 and PD-1 blockade may expand the benefit of chemotherapy in PDAC and warrants confirmation in subsequent randomized trials.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Peritoneales/tratamiento farmacológico , Neoplasias Retroperitoneales/tratamiento farmacológico , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales Humanizados/administración & dosificación , Antineoplásicos Inmunológicos , Linfocitos T CD8-positivos/patología , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/secundario , Femenino , Fluorouracilo/administración & dosificación , Humanos , Irinotecán/administración & dosificación , Leucovorina/administración & dosificación , Neoplasias Hepáticas/secundario , Neoplasias Pulmonares/secundario , Ganglios Linfáticos/patología , Metástasis Linfática , Linfocitos Infiltrantes de Tumor/patología , Masculino , Persona de Mediana Edad , Células Supresoras de Origen Mieloide/patología , Neoplasias Pancreáticas/patología , Péptidos/administración & dosificación , Neoplasias Peritoneales/secundario , Receptores CXCR4/antagonistas & inhibidores , Neoplasias Retroperitoneales/secundario , Tasa de Supervivencia , Linfocitos T Reguladores/patología , Resultado del Tratamiento
4.
Org Lett ; 5(18): 3361-4, 2003 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-12943427

RESUMEN

[reaction: see text] An enantioselective total synthesis of (-)-stemonine (1) is reported via a convergent assembly of the acyclic precursor 2. Key transformations include a Staudinger-aza-Wittig reaction to form the central perhydroazepine ring system and an iodine-induced tandem cyclization to construct the pyrrolidino-butyrolactone framework.


Asunto(s)
Alcaloides/síntesis química , Lactonas/síntesis química , Pirrolidinas/síntesis química , Stemonaceae/química , Azepinas/química , Ciclización , Yodo/química , Lactonas/química , Estructura Molecular , Pirrolidinas/química , Estereoisomerismo
5.
J Virol Methods ; 174(1-2): 153-7, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21473883

RESUMEN

The current standard of care for patients infected with hepatitis C virus (HCV) is not effective universally and is associated with severe side effects. Direct-acting antiviral molecules have potential to transform treatment of HCV-infected individuals but emergence of drug-resistant virus will be problematic. It is anticipated that, to limit the emergence of drug-resistant virus, future HCV therapies must consist of multiple direct-acting antivirals. In the present study, cell culture-based colony-forming assays were used to demonstrate enhanced suppression of HCV RNA replication following simultaneous treatment of HCV replicon-containing cells with two direct-acting antivirals. Specifically, combinations of NS5Ai and Filibuvir (small molecule inhibitors of HCV-encoded NS5A and NS5B proteins respectively) were able to suppress colony formation fully at concentrations that individually they could not. HCV replicon RNA isolated from colonies that emerged following treatment with suboptimal concentrations of NS5Ai were found to encode resistance substitutions in the NS5A gene, which rendered them insensitive to subsequent high doses of NS5Ai. Furthermore, both NS5Ai and Filibuvir were effective at suppressing colony formation in combination with BILN 2061, an inhibitor of HCV-encoded NS3. Collectively, these data underscore the increased inhibitory capacity of direct-acting antivirals to suppress HCV RNA replication when present in combination.


Asunto(s)
Antivirales/farmacología , Sinergismo Farmacológico , Hepacivirus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Línea Celular , Ensayo de Unidades Formadoras de Colonias , Hepatocitos/efectos de los fármacos , Hepatocitos/virología , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Pironas/farmacología , Triazoles/farmacología , Proteínas no Estructurales Virales/farmacología
6.
Bioinformatics ; 22(6): 747-54, 2006 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-16403793

RESUMEN

MOTIVATION: In a gene regulatory network, genes are typically regulated by transcription factors (TFs). Transcription factor activity (TFA) is more difficult to measure than gene expression levels are. Other models have extracted information about TFA from gene expression data, but without explicitly modeling feedback from the genes. We present a state-space model (SSM) with hidden variables. The hidden variables include regulatory motifs in the gene network, such as feedback loops and auto-regulation, making SSM a useful complement to existing models. RESULTS: A gene regulatory network incorporating, for example, feed-forward loops, auto-regulation and multiple-inputs was constructed with an SSM model. First, the gene expression data were simulated by SSM and used to infer the TFAs. The ability of SSM to infer TFAs was evaluated by comparing the profiles of the inferred and simulated TFAs. Second, SSM was applied to gene expression data obtained from Escherichia coli K12 undergoing a carbon source transition and from the Saccharomyces cerevisiae cell cycle. The inferred activity profile for each TF was validated either by measurement or by activity information from the literature. The SSM model provides a probabilistic framework to simulate gene regulatory networks and to infer activity profiles of hidden variables. AVAILABILITY: Supplementary data and Matlab code will be made available at the URL below. SUPPLEMENTARY INFORMATION: http://www.chems.msu.edu/groups/chan/ssm.zip.


Asunto(s)
Fenómenos Fisiológicos Celulares , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/fisiología , Modelos Biológicos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Algoritmos , Simulación por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA