Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell ; 143(7): 1084-96, 2010 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-21183072

RESUMEN

Epigenetic information can be inherited through the mammalian germline and represents a plausible transgenerational carrier of environmental information. To test whether transgenerational inheritance of environmental information occurs in mammals, we carried out an expression profiling screen for genes in mice that responded to paternal diet. Offspring of males fed a low-protein diet exhibited elevated hepatic expression of many genes involved in lipid and cholesterol biosynthesis and decreased levels of cholesterol esters, relative to the offspring of males fed a control diet. Epigenomic profiling of offspring livers revealed numerous modest (∼20%) changes in cytosine methylation depending on paternal diet, including reproducible changes in methylation over a likely enhancer for the key lipid regulator Ppara. These results, in conjunction with recent human epidemiological data, indicate that parental diet can affect cholesterol and lipid metabolism in offspring and define a model system to study environmental reprogramming of the heritable epigenome.


Asunto(s)
Metilación de ADN , Dieta con Restricción de Proteínas , Impresión Genómica , Metabolismo de los Lípidos , Animales , Vías Biosintéticas , Colesterol/biosíntesis , Citosina/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Humanos , Hígado/metabolismo , Masculino , Ratones
2.
bioRxiv ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38645176

RESUMEN

During aging, microglia - the resident macrophages of the brain - exhibit dystrophic phenotypes and contribute to age-related neuroinflammation. While numerous hallmarks of age-related microglia dystrophy have been elucidated, the progression from homeostasis to dysfunction during the aging process remains unresolved. To bridge this gap in knowledge, we undertook complementary cellular and molecular analyses of microglia in the mouse hippocampus across the adult lifespan and in the experimental aging model of heterochronic parabiosis. Single-cell RNA-Seq and pseudotime analysis revealed age-related transcriptional heterogeneity in hippocampal microglia and identified intermediate states of microglial aging that also emerge following heterochronic parabiosis. We tested the functionality of intermediate stress response states via TGFß1 and translational states using pharmacological approaches in vitro to reveal their modulation of the progression to an inflammatory state. Furthermore, we utilized single-cell RNA-Seq in conjunction with an in vivo adult microglia-specific Tgfb1 conditional genetic knockout mouse model, to demonstrate that microglia advancement through intermediate aging states drives inflammatory activation and associated hippocampal-dependent cognitive decline.

3.
bioRxiv ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38659809

RESUMEN

Across species, spatial memory declines with age, possibly reflecting altered hippocampal and medial entorhinal cortex (MEC) function. However, the integrity of cellular and network-level spatial coding in aged MEC is unknown. Here, we leveraged in vivo electrophysiology to assess MEC function in young, middle-aged, and aged mice navigating virtual environments. In aged grid cells, we observed impaired stabilization of context-specific spatial firing, correlated with spatial memory deficits. Additionally, aged grid networks shifted firing patterns often but with poor alignment to context changes. Aged spatial firing was also unstable in an unchanging environment. In these same mice, we identified 458 genes differentially expressed with age in MEC, 61 of which had expression correlated with spatial firing stability. These genes were enriched among interneurons and related to synaptic transmission. Together, these findings identify coordinated transcriptomic, cellular, and network changes in MEC implicated in impaired spatial memory in aging.

4.
Cell Rep ; 41(6): 111612, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36351399

RESUMEN

DNA methylation has emerged as a critical modulator of neuronal plasticity and cognitive function. Notwithstanding, the role of enzymes that demethylate DNA remain to be fully explored. Here, we report that loss of ten-eleven translocation methylcytosine dioxygenase 2 (Tet2), which catalyzes oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), in adult neurons enhances cognitive function. In the adult mouse hippocampus, we detected an enrichment of Tet2 in neurons. Viral-mediated neuronal overexpression and RNA interference of Tet2 altered dendritic complexity and synaptic-plasticity-related gene expression in vitro. Overexpression of neuronal Tet2 in adult hippocampus, and loss of Tet2 in adult glutamatergic neurons, resulted in differential hydroxymethylation associated with genes involved in synaptic transmission. Functionally, overexpression of neuronal Tet2 impaired hippocampal-dependent memory, while loss of neuronal Tet2 enhanced memory. Ultimately, these data identify neuronal Tet2 as a molecular target to boost cognitive function.


Asunto(s)
Dioxigenasas , Proteínas Proto-Oncogénicas , Animales , Ratones , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Unión al ADN/metabolismo , 5-Metilcitosina/metabolismo , Dioxigenasas/genética , Metilación de ADN/genética , Cognición , Neuronas/metabolismo , Hipocampo/metabolismo
5.
Cell Rep ; 22(8): 1974-1981, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29466726

RESUMEN

Restoring adult stem cell function provides an exciting approach for rejuvenating the aging brain. However, molecular mechanisms mediating neurogenic rejuvenation remain elusive. Here we report that the enzyme ten eleven translocation methylcytosine dioxygenase 2 (Tet2), which catalyzes the production of 5-hydroxymethylcytosine (5hmC), rescues age-related decline in adult neurogenesis and enhances cognition in mice. We detected a decrease in Tet2 expression and 5hmC levels in the aged hippocampus associated with adult neurogenesis. Mimicking an aged condition in young adults by abrogating Tet2 expression within the hippocampal neurogenic niche, or adult neural stem cells, decreased neurogenesis and impaired learning and memory. In a heterochronic parabiosis rejuvenation model, hippocampal Tet2 expression was restored. Overexpressing Tet2 in the hippocampal neurogenic niche of mature adults increased 5hmC associated with neurogenic processes, offset the precipitous age-related decline in neurogenesis, and enhanced learning and memory. Our data identify Tet2 as a key molecular mediator of neurogenic rejuvenation.


Asunto(s)
Envejecimiento/patología , Encéfalo/fisiopatología , Cognición , Proteínas de Unión al ADN/metabolismo , Regeneración Nerviosa , Proteínas Proto-Oncogénicas/metabolismo , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animales , Giro Dentado/metabolismo , Giro Dentado/patología , Giro Dentado/fisiopatología , Dioxigenasas , Masculino , Ratones Endogámicos C57BL , Modelos Animales , Células-Madre Neurales/metabolismo , Neurogénesis , Parabiosis
7.
Clin Exp Neuroimmunol ; 7(2): 114-125, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27840659

RESUMEN

Aging alters the functional integrity of the adult brain, driving cognitive impairments and susceptibility to neurodegenerative disorders in healthy individuals. In fact, aging remains the most dominant risk factor for Alzheimer's disease (AD). Recent findings have expanded our understanding of microglia function in the normal aging and AD brain, provoking an appreciation for microglia involvement in remodeling neuronal connections and maintaining brain integrity. This homeostatic function of microglia is achieved in part through the ability of microglia to interact extensively with and rapidly respond to changes in the brain microenvironment to enable adequate phenotypic transformations. Here, we discuss pro-inflammatory drivers of microglia transformation in aging and AD by focusing on the immune-modulatory functions of secreted factors, such as cytokines, complement factors and extracellular vesicles. We highlight the involvement of these secreted factors in aging and AD-associated cellular changes in microglia immune activation, surveillance function, and phagocytosis. Finally, we discuss how pro-inflammatory phenotypic changes associated with altered immune communication could both facilitate and exacerbate impairments in synaptic plasticity and cognitive function observed in the aged and AD brain.

8.
Elife ; 52016 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-27642011

RESUMEN

Mammalian X-linked gene expression is highly regulated as female cells contain two and male one X chromosome (X). To adjust the X gene dosage between genders, female mouse preimplantation embryos undergo an imprinted form of X chromosome inactivation (iXCI) that requires both Rlim (also known as Rnf12) and the long non-coding RNA Xist. Moreover, it is thought that gene expression from the single active X is upregulated to correct for bi-allelic autosomal (A) gene expression. We have combined mouse genetics with RNA-seq on single mouse embryos to investigate functions of Rlim on the temporal regulation of iXCI and Xist. Our results reveal crucial roles of Rlim for the maintenance of high Xist RNA levels, Xist clouds and X-silencing in female embryos at blastocyst stages, while initial Xist expression appears Rlim-independent. We find further that X/A upregulation is initiated in early male and female preimplantation embryos.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Genes Ligados a X , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Ratones , ARN Largo no Codificante/metabolismo , Análisis de Secuencia de ARN , Inactivación del Cromosoma X
9.
Science ; 351(6271): 391-396, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26721685

RESUMEN

Several recent studies link parental environments to phenotypes in subsequent generations. In this work, we investigate the mechanism by which paternal diet affects offspring metabolism. Protein restriction in mice affects small RNA (sRNA) levels in mature sperm, with decreased let-7 levels and increased amounts of 5' fragments of glycine transfer RNAs (tRNAs). In testicular sperm, tRNA fragments are scarce but increase in abundance as sperm mature in the epididymis. Epididymosomes (vesicles that fuse with sperm during epididymal transit) carry RNA payloads matching those of mature sperm and can deliver RNAs to immature sperm in vitro. Functionally, tRNA-glycine-GCC fragments repress genes associated with the endogenous retroelement MERVL, in both embryonic stem cells and embryos. Our results shed light on sRNA biogenesis and its dietary regulation during posttesticular sperm maturation, and they also link tRNA fragments to regulation of endogenous retroelements active in the preimplantation embryo.


Asunto(s)
Fertilización , Regulación de la Expresión Génica , ARN de Transferencia de Glicerina/metabolismo , ARN de Transferencia de Glicerina/fisiología , Maduración del Esperma , Espermatozoides/metabolismo , Animales , Blastocisto/metabolismo , Dieta con Restricción de Proteínas , Epidídimo/metabolismo , Masculino , Ratones , MicroARNs/metabolismo , Retroelementos/genética , Testículo/metabolismo
11.
Dev Cell ; 35(6): 750-8, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26702833

RESUMEN

Paternal diet can impact metabolic phenotypes in offspring, but mechanisms underlying such intergenerational information transfer remain obscure. Here, we interrogate cytosine methylation patterns in sperm obtained from mice consuming one of three diets, generating whole genome methylation maps for four pools of sperm samples and for 12 individual sperm samples, as well as 61 genome-scale methylation maps. We find that "epivariation," either stochastic or due to unknown demographic or environmental factors, was a far stronger contributor to the sperm methylome than was the diet consumed. Variation in cytosine methylation was particularly dramatic over tandem repeat families, including ribosomal DNA (rDNA) repeats, but rDNA methylation was strongly correlated with genetic variation in rDNA copy number and was not influenced by paternal diet. These results identify loci of genetic and epigenetic lability in the mammalian genome but argue against a direct role for sperm cytosine methylation in dietary reprogramming of offspring metabolism.


Asunto(s)
ADN Ribosómico/genética , Epigénesis Genética/genética , Variación Genética , Genoma/genética , Espermatozoides/metabolismo , Animales , Metilación de ADN/genética , Dieta , Epigenómica , Masculino , Ratones
12.
Cell ; 129(6): 1081-95, 2007 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-17574022

RESUMEN

Hematopoiesis is maintained by stem cells (HSCs) that undergo fate decisions by integrating intrinsic and extrinsic signals, with the latter derived from the bone marrow (BM) microenvironment. Cell-cycle regulation can modulate stem cell fate, but it is unknown whether this represents an intrinsic or extrinsic effector of fate decisions. We have investigated the role of the retinoblastoma protein (RB), a central regulator of the cell cycle, in hematopoiesis. Widespread inactivation of RB in the murine hematopoietic system resulted in profound myeloproliferation. HSCs were lost from the BM due to mobilization to extramedullary sites and differentiation. This phenotype was not intrinsic to HSCs, but, rather, was the consequence of an RB-dependent interaction between myeloid-derived cells and the microenvironment. These findings demonstrate that myeloproliferation may result from perturbed interactions between hematopoietic cells and the niche. Therefore, RB extrinsically regulates HSCs by maintaining the capacity of the BM to support normal hematopoiesis and HSCs.


Asunto(s)
Médula Ósea/metabolismo , Regulación de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Proteína de Retinoblastoma/fisiología , Animales , Células de la Médula Ósea , Ciclo Celular , Diferenciación Celular , Eliminación de Gen , Ratones , Modelos Biológicos , Trastornos Mieloproliferativos/metabolismo , Fenotipo , Células Madre/citología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA