Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Cell Dev Biol ; 37: 341-367, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34351784

RESUMEN

Nutrients are vital to life through intertwined sensing, signaling, and metabolic processes. Emerging research focuses on how distinct nutrient signaling networks integrate and coordinate gene expression, metabolism, growth, and survival. We review the multifaceted roles of sugars, nitrate, and phosphate as essential plant nutrients in controlling complex molecular and cellular mechanisms of dynamic signaling networks. Key advances in central sugar and energy signaling mechanisms mediated by the evolutionarily conserved master regulators HEXOKINASE1 (HXK1), TARGET OF RAPAMYCIN (TOR), and SNF1-RELATED PROTEIN KINASE1 (SNRK1) are discussed. Significant progress in primary nitrate sensing, calcium signaling, transcriptome analysis, and root-shoot communication to shape plant biomass and architecture are elaborated. Discoveries on intracellular and extracellular phosphate signaling and the intimate connections with nitrate and sugar signaling are examined. This review highlights the dynamic nutrient, energy, growth, and stress signaling networks that orchestrate systemwide transcriptional, translational, and metabolic reprogramming, modulate growth and developmental programs, and respond to environmental cues.


Asunto(s)
Desarrollo de la Planta , Transducción de Señal , Nutrientes , Desarrollo de la Planta/genética , Plantas/genética , Plantas/metabolismo , Transducción de Señal/genética
2.
Nature ; 609(7929): 986-993, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36104568

RESUMEN

Nutrients and energy have emerged as central modulators of developmental programmes in plants and animals1-3. The evolutionarily conserved target of rapamycin (TOR) kinase is a master integrator of nutrient and energy signalling that controls growth. Despite its key regulatory roles in translation, proliferation, metabolism and autophagy2-5, little is known about how TOR shapes developmental transitions and differentiation. Here we show that glucose-activated TOR kinase controls genome-wide histone H3 trimethylation at K27 (H3K27me3) in Arabidopsis thaliana, which regulates cell fate and development6-10. We identify FERTILIZATION-INDEPENDENT ENDOSPERM (FIE), an indispensable component of Polycomb repressive complex 2 (PRC2), which catalyses H3K27me3 (refs. 6-8,10-12), as a TOR target. Direct phosphorylation by TOR promotes the dynamic translocation of FIE from the cytoplasm to the nucleus. Mutation of the phosphorylation site on FIE abrogates the global H3K27me3 landscape, reprogrammes the transcriptome and disrupts organogenesis in plants. Moreover, glucose-TOR-FIE-PRC2 signalling modulates vernalization-induced floral transition. We propose that this signalling axis serves as a nutritional checkpoint leading to epigenetic silencing of key transcription factor genes that specify stem cell destiny in shoot and root meristems and control leaf, flower and silique patterning, branching and vegetative-to-reproduction transition. Our findings reveal a fundamental mechanism of nutrient signalling in direct epigenome reprogramming, with broad relevance for the developmental control of multicellular organisms.


Asunto(s)
Arabidopsis , Glucosa , Diana Mecanicista del Complejo 2 de la Rapamicina , Fosfatidilinositol 3-Quinasas , Desarrollo de la Planta , Complejo Represivo Polycomb 2 , Proteínas Represoras , Transducción de Señal , Arabidopsis/embriología , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Diferenciación Celular/genética , Linaje de la Célula/genética , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Glucosa/metabolismo , Histonas/química , Histonas/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Mutación , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Desarrollo de la Planta/genética , Complejo Represivo Polycomb 2/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/genética
3.
EMBO J ; 41(19): e110988, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-35942625

RESUMEN

One of the hallmarks of plant senescence is the global transcriptional reprogramming coordinated by a plethora of transcription factors (TFs). However, mechanisms underlying the interactions between different TFs in modulating senescence remain obscure. Previously, we discovered that plant ABS3 subfamily MATE transporter genes regulate senescence and senescence-associated transcriptional changes. In a genetic screen for mutants suppressing the accelerated senescence phenotype of the gain-of-function mutant abs3-1D, AUXIN RESPONSE FACTOR 2 (ARF2) and PHYTOCHROME-INTERACTING FACTOR 5 (PIF5) were identified as key TFs responsible for transcriptional regulation in the ABS3-mediated senescence pathway. ARF2 and PIF5 (as well as PIF4) interact directly and function interdependently to promote senescence, and they share common target genes such as key senescence promoting genes ORESARA 1 (ORE1) and STAY-GREEN 1 (SGR1) in the ABS3-mediated senescence pathway. In addition, we discovered reciprocal regulation between ABS3-subfamily MATEs and the ARF2 and PIF5/4 TFs. Taken together, our findings reveal a regulatory paradigm in which the ARF2-PIF5/4 functional module facilitates the transcriptional reprogramming in the ABS3-mediated senescence pathway.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factor V/genética , Factor V/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Fitocromo/genética , Senescencia de la Planta , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Plant Physiol ; 188(4): 1917-1930, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35088855

RESUMEN

Wild tomatoes (Solanum peruvianum) are important genomic resources for tomato research and breeding. Development of a foreign DNA-free clustered regularly interspaced short palindromic repeat (CRISPR)-Cas delivery system has potential to mitigate public concern about genetically modified organisms. Here, we established a DNA-free CRISPR-Cas9 genome editing system based on an optimized protoplast regeneration protocol of S. peruvianum, an important resource for tomato introgression breeding. We generated mutants for genes involved in small interfering RNAs biogenesis, RNA-DEPENDENT RNA POLYMERASE 6 (SpRDR6), and SUPPRESSOR OF GENE SILENCING 3 (SpSGS3); pathogen-related peptide precursors, PATHOGENESIS-RELATED PROTEIN-1 (SpPR-1) and PROSYSTEMIN (SpProSys); and fungal resistance (MILDEW RESISTANT LOCUS O, SpMlo1) using diploid or tetraploid protoplasts derived from in vitro-grown shoots. The ploidy level of these regenerants was not affected by PEG-Ca2+-mediated transfection, CRISPR reagents, or the target genes. By karyotyping and whole genome sequencing analysis, we confirmed that CRISPR-Cas9 editing did not introduce chromosomal changes or unintended genome editing sites. All mutated genes in both diploid and tetraploid regenerants were heritable in the next generation. spsgs3 null T0 regenerants and sprdr6 null T1 progeny had wiry, sterile phenotypes in both diploid and tetraploid lines. The sterility of the spsgs3 null mutant was partially rescued, and fruits were obtained by grafting to wild-type (WT) stock and pollination with WT pollen. The resulting seeds contained the mutated alleles. Tomato yellow leaf curl virus proliferated at higher levels in spsgs3 and sprdr6 mutants than in the WT. Therefore, this protoplast regeneration technique should greatly facilitate tomato polyploidization and enable the use of CRISPR-Cas for S. peruvianum domestication and tomato breeding.


Asunto(s)
Solanum lycopersicum , Solanum , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Genoma de Planta/genética , Solanum lycopersicum/genética , Fitomejoramiento , Protoplastos , Regeneración , Solanum/genética , Tetraploidía
5.
Nature ; 545(7654): 311-316, 2017 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-28489820

RESUMEN

Nutrient signalling integrates and coordinates gene expression, metabolism and growth. However, its primary molecular mechanisms remain incompletely understood in plants and animals. Here we report unique Ca2+ signalling triggered by nitrate with live imaging of an ultrasensitive biosensor in Arabidopsis leaves and roots. A nitrate-sensitized and targeted functional genomic screen identifies subgroup III Ca2+-sensor protein kinases (CPKs) as master regulators that orchestrate primary nitrate responses. A chemical switch with the engineered mutant CPK10(M141G) circumvents embryo lethality and enables conditional analyses of cpk10 cpk30 cpk32 triple mutants to define comprehensive nitrate-associated regulatory and developmental programs. Nitrate-coupled CPK signalling phosphorylates conserved NIN-LIKE PROTEIN (NLP) transcription factors to specify the reprogramming of gene sets for downstream transcription factors, transporters, nitrogen assimilation, carbon/nitrogen metabolism, redox, signalling, hormones and proliferation. Conditional cpk10 cpk30 cpk32 and nlp7 mutants similarly impair nitrate-stimulated system-wide shoot growth and root establishment. The nutrient-coupled Ca2+ signalling network integrates transcriptome and cellular metabolism with shoot-root coordination and developmental plasticity in shaping organ biomass and architecture.


Asunto(s)
Amidohidrolasas/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Calcio/metabolismo , Nitratos/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal , Amidohidrolasas/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biomasa , Señalización del Calcio , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/química , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Carbono/metabolismo , Reprogramación Celular , Alimentos , Regulación de la Expresión Génica de las Plantas , Nitrógeno/metabolismo , Oxidación-Reducción , Fosforilación , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente , Proteínas Quinasas/química , Proteínas Quinasas/genética , Transcripción Genética , Transcriptoma
6.
J Exp Bot ; 73(20): 7041-7054, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-35781569

RESUMEN

To survive and sustain growth, sessile plants have developed sophisticated internal signalling networks that respond to various external and internal cues. Despite the central roles of nutrient and hormone signaling in plant growth and development, how hormone-driven processes coordinate with metabolic status remains largely enigmatic. Target of rapamycin (TOR) kinase is an evolutionarily conserved master regulator that integrates energy, nutrients, growth factors, hormones, and stress signals to promote growth in all eukaryotes. Inspired by recent comprehensive systems, chemical, genetic, and genomic studies on TOR in plants, this review discusses a potential role of TOR as a 'global positioning system' that directs plant growth and developmental programs both temporally and spatially by integrating dynamic information in the complex nutrient and hormonal signaling networks. We further evaluate and depict the possible functional and mechanistic models for how a single protein kinase, TOR, is able to recognize, integrate, and even distinguish a plethora of positive and negative input signals to execute appropriate and distinct downstream biological processes via multiple partners and effectors.


Asunto(s)
Fenómenos Biológicos , Sirolimus , Sirolimus/metabolismo , Desarrollo de la Planta/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Nutrientes , Hormonas/metabolismo
7.
Plant Cell ; 31(7): 1614-1632, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31123051

RESUMEN

Energy homeostasis is vital to all living organisms. In eukaryotes, this process is controlled by fuel gauging protein kinases: AMP-activated kinase in mammals, Sucrose Non-Fermenting1 (SNF1) in yeast (Saccharomyces cerevisiae), and SNF1-related kinase1 (SnRK1) in plants. These kinases are highly conserved in structure and function and (according to this paradigm) operate as heterotrimeric complexes of catalytic-α and regulatory ß- and γ-subunits, responding to low cellular nucleotide charge. Here, we determined that the Arabidopsis (Arabidopsis thaliana) SnRK1 catalytic α-subunit has regulatory subunit-independent activity, which is consistent with default activation (and thus controlled repression), a strategy more generally used by plants. Low energy stress (caused by darkness, inhibited photosynthesis, or hypoxia) also triggers SnRK1α nuclear translocation, thereby controlling induced but not repressed target gene expression to replenish cellular energy for plant survival. The myristoylated and membrane-associated regulatory ß-subunits restrict nuclear localization and inhibit target gene induction. Transgenic plants with forced SnRK1α-subunit localization consistently were affected in metabolic stress responses, but their analysis also revealed key roles for nuclear SnRK1 in leaf and root growth and development. Our findings suggest that plants have modified the ancient, highly conserved eukaryotic energy sensor to better fit their unique lifestyle and to more effectively cope with changing environmental conditions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Metabolismo Energético , Desarrollo de la Planta , Proteínas Serina-Treonina Quinasas/metabolismo , Estrés Fisiológico , Arabidopsis/genética , Dominio Catalítico , Metabolismo Energético/genética , Activación Enzimática , Regulación de la Expresión Génica de las Plantas , Desarrollo de la Planta/genética , Raíces de Plantas/crecimiento & desarrollo , Transporte de Proteínas , Estrés Fisiológico/genética
8.
Development ; 145(13)2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29986898

RESUMEN

Target of rapamycin (TOR) is an evolutionarily conserved protein kinase that plays a central role in both plants and animals, despite their distinct developmental programs and survival strategies. Indeed, TOR integrates nutrient, energy, hormone, growth factor and environmental inputs to control proliferation, growth and metabolism in diverse multicellular organisms. Here, we compare the molecular composition, upstream regulators and downstream signaling relays of TOR complexes in plants and animals. We also explore and discuss the pivotal functions of TOR signaling in basic cellular processes, such as translation, cell division and stem/progenitor cell regulation during plant development.


Asunto(s)
Desarrollo de la Planta/fisiología , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Proteínas de Plantas/genética , Plantas/genética , Serina-Treonina Quinasas TOR/genética
9.
Nature ; 521(7551): 213-6, 2015 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-25731164

RESUMEN

Mitogen-activated protein kinase (MAPK) cascades play central roles in innate immune signalling networks in plants and animals. In plants, however, the molecular mechanisms of how signal perception is transduced to MAPK activation remain elusive. Here we report that pathogen-secreted proteases activate a previously unknown signalling pathway in Arabidopsis thaliana involving the Gα, Gß, and Gγ subunits of heterotrimeric G-protein complexes, which function upstream of an MAPK cascade. In this pathway, receptor for activated C kinase 1 (RACK1) functions as a novel scaffold that binds to the Gß subunit as well as to all three tiers of the MAPK cascade, thereby linking upstream G-protein signalling to downstream activation of an MAPK cascade. The protease-G-protein-RACK1-MAPK cascade modules identified in these studies are distinct from previously described plant immune signalling pathways such as that elicited by bacterial flagellin, in which G proteins function downstream of or in parallel to an MAPK cascade without the involvement of the RACK1 scaffolding protein. The discovery of the new protease-mediated immune signalling pathway described here was facilitated by the use of the broad host range, opportunistic bacterial pathogen Pseudomonas aeruginosa. The ability of P. aeruginosa to infect both plants and animals makes it an excellent model to identify novel immunoregulatory strategies that account for its niche adaptation to diverse host tissues and immune systems.


Asunto(s)
Arabidopsis/inmunología , Arabidopsis/microbiología , Péptido Hidrolasas/metabolismo , Inmunidad de la Planta/inmunología , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/inmunología , Arabidopsis/enzimología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flagelina/inmunología , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Inmunidad Innata , Sistema de Señalización de MAP Quinasas , Proteolisis , Pseudomonas aeruginosa/patogenicidad , Receptores de Cinasa C Activada , Receptores de Superficie Celular/deficiencia , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo
10.
Proc Natl Acad Sci U S A ; 115(50): 12823-12828, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30482859

RESUMEN

Deetiolation is an essential developmental process transforming young plant seedlings into the vegetative phase with photosynthetic activities. Light signals initiate this important developmental process by triggering massive reprogramming of the transcriptome and translatome. Compared with the wealth of knowledge of transcriptional regulation, the molecular mechanism underlying this light-triggered translational enhancement remains unclear. Here we show that light-enhanced translation is orchestrated by a light perception and signaling pathway composed of photoreceptors, CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1), the phytohormone auxin, target of rapamycin (TOR), and ribosomal protein S6 (RPS6). In deetiolating Arabidopsis seedlings, photoreceptors, including phytochrome A and cryptochromes, perceive far-red and blue light to inactivate the negative regulator COP1, which leads to activation of the auxin pathway for TOR-dependent phosphorylation of RPS6. Arabidopsis mutants defective in TOR, RPS6A, or RPS6B exhibited delayed cotyledon opening, a characteristic of the deetiolating process to ensure timely vegetative development of a young seedling. This study provides a mechanistic view of light-triggered translational enhancement in deetiolating Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Etiolado/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Biosíntesis de Proteínas/fisiología , Plantones/metabolismo , Cotiledón/metabolismo , Criptocromos/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Ácidos Indolacéticos/metabolismo , Luz , Fosforilación/fisiología , Fotorreceptores de Plantas/metabolismo , Fotosíntesis/fisiología , Fitocromo A/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantones/fisiología , Transducción de Señal/fisiología , Transcriptoma/fisiología , Ubiquitina-Proteína Ligasas
11.
J Exp Bot ; 71(15): 4428-4441, 2020 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31985788

RESUMEN

Nitrate, the major source of inorganic nitrogen for plants, is a critical signal controlling nutrient transport and assimilation and adaptive growth responses throughout the plant. Understanding how plants perceive nitrate and how this perception is transduced into responses that optimize growth are important for the rational improvement of crop productivity and for mitigating pollution from the use of fertilizers. This review highlights recent findings that reveal key roles of cytosolic-nuclear calcium signalling and dynamic protein phosphorylation via diverse mechanisms in the primary nitrate response (PNR). Nitrate-triggered calcium signatures as well as the critical functions of subgroup III calcium-sensor protein kinases, a specific protein phosphatase 2C, and RNA polymerase II C-terminal domain phosphatase-like 3 are discussed. Moreover, genome-wide meta-analysis of nitrate-regulated genes encoding candidate protein kinases and phosphatases for modulating critical phosphorylation events in the PNR are elaborated. We also consider how phosphoproteomics approaches can contribute to the identification of putative regulatory protein kinases in the PNR. Exploring and integrating experimental strategies, new methodologies, and comprehensive datasets will further advance our understanding of the molecular and cellular mechanisms underlying the complex regulatory processes in the PNR.


Asunto(s)
Calcio , Nitratos , Calcio/metabolismo , Nitrógeno , Fosforilación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
PLoS Comput Biol ; 15(10): e1007429, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31658257

RESUMEN

The plant hormone abscisic acid (ABA) promotes stomatal closure via multifarious cellular signaling cascades. Our previous comprehensive reconstruction of the stomatal closure network resulted in an 81-node network with 153 edges. Discrete dynamic modeling utilizing this network reproduced over 75% of experimental observations but a few experimentally supported results were not recapitulated. Here we identify predictions that improve the agreement between model and experiment. We performed dynamics-preserving network reduction, resulting in a condensed 49 node and 113 edge stomatal closure network that preserved all dynamics-determining network motifs and reproduced the predictions of the original model. We then utilized the reduced network to explore cases in which experimental activation of internal nodes in the absence of ABA elicited stomatal closure in wet bench experiments, but not in our in silico model. Our simulations revealed that addition of a single edge, which allows indirect inhibition of any one of three PP2C protein phosphatases (ABI2, PP2CA, HAB1) by cytosolic Ca2+ elevation, resolves the majority of the discrepancies. Consistent with this hypothesis, we experimentally show that Ca2+ application to cellular lysates at physiological concentrations inhibits PP2C activity. The model augmented with this new edge provides new insights into the role of cytosolic Ca2+ oscillations in stomatal closure, revealing a mutual reinforcement between repeated increases in cytosolic Ca2+ concentration and a self-sustaining feedback circuit inside the signaling network. These results illustrate how iteration between model and experiment can improve predictions of highly complex cellular dynamics.


Asunto(s)
Estomas de Plantas/metabolismo , Proteína Fosfatasa 2C/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Simulación por Computador , Modelos Estadísticos , Fosfoproteínas Fosfatasas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo
13.
J Exp Bot ; 70(8): 2227-2238, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30715492

RESUMEN

The multidomain target of rapamycin (TOR) is an atypical serine/threonine protein kinase resembling phosphatidylinositol lipid kinases, but retains high sequence identity and serves a remarkably conserved role as a master signalling integrator in yeasts, plants, and humans. TOR dynamically orchestrates cell metabolism, biogenesis, organ growth, and development transitions in response to nutrient, energy, hormone, and environmental cues. Here we review recent findings on the versatile and complex roles of TOR in transcriptome reprogramming, seedling, root, and shoot growth, and root hair production activated by sugar and energy signalling. We explore how co-ordination of TOR-mediated light and hormone signalling is involved in root and shoot apical meristem activation, proliferation of leaf primordia, cotyledon/leaf greening, and hypocotyl elongation. We also discuss the emerging TOR functions in response to sulfur assimilation and metabolism and consider potential molecular links and positive feedback loops between TOR, sugar, energy, and other essential macronutrients.


Asunto(s)
Desarrollo de la Planta/fisiología , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR , Metabolismo Energético/fisiología , Meristema/crecimiento & desarrollo , Nutrientes/metabolismo , Fotosíntesis/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Transcriptoma/fisiología
14.
Nature ; 496(7444): 181-6, 2013 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-23542588

RESUMEN

Meristems encompass stem/progenitor cells that sustain postembryonic growth of all plant organs. How meristems are activated and sustained by nutrient signalling remains enigmatic in photosynthetic plants. Combining chemical manipulations and chemical genetics at the photoautotrophic transition checkpoint, we reveal that shoot photosynthesis-derived glucose drives target-of-rapamycin (TOR) signalling relays through glycolysis and mitochondrial bioenergetics to control root meristem activation, which is decoupled from direct glucose sensing, growth-hormone signalling and stem-cell maintenance. Surprisingly, glucose-TOR signalling dictates transcriptional reprogramming of remarkable gene sets involved in central and secondary metabolism, cell cycle, transcription, signalling, transport and protein folding. Systems, cellular and genetic analyses uncover TOR phosphorylation of E2Fa transcription factor for an unconventional activation of S-phase genes, and glucose-signalling defects in e2fa root meristems. Our findings establish pivotal roles of glucose-TOR signalling in unprecedented transcriptional networks wiring central metabolism and biosynthesis for energy and biomass production, and integrating localized stem/progenitor-cell proliferation through inter-organ nutrient coordination to control developmental transition and growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucosa/metabolismo , Meristema/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Transcriptoma , Arabidopsis/crecimiento & desarrollo , Citocininas/metabolismo , Factores de Transcripción E2F/metabolismo , Activación Enzimática , Redes Reguladoras de Genes/genética , Ácidos Indolacéticos/metabolismo , Meristema/genética , Meristema/crecimiento & desarrollo , Fosforilación , Fotosíntesis , Fase S/genética , Transcripción Genética/genética , Activación Transcripcional , Transcriptoma/genética
15.
Plant Cell Rep ; 38(3): 311-319, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30552452

RESUMEN

KEY MESSAGE: CLV3p-mediated phosphorylation of MPK3 and MPK6 occurs via CLV1 and BAM1 receptors to regulate the maintenance of SAM development. The CLAVATA peptide-receptor (CLV3p-CLV1) pathway modulates a homeodomain master regulator WUSCHEL (WUS) transcription factor in the shoot apical meristem (SAM) with poorly defined signaling mechanisms. Here, we report that mitogen-activated protein kinases (MAPKs, also known as MPKs in plants) act in an intracellular signaling cascade to play an important role in the maintenance of SAM development. Interestingly, the application of exogenous CLV3p triggers rapid signaling in the SAM via dynamic activation of MPK3 and MPK6, which are positively regulated by both CLV1 and BARELY ANY MERISTEM 1 (BAM1) receptors. Surprisingly, the timing of MAPK activation is tightly correlated with the transcriptional repression of WUS expression in the SAM, indicating a fast CLV3p-CLV1/BAM1 signaling event. Furthermore, conditional mpk3,6 double mutants exhibited CLV3p insensitivity in stem cell maintenance manifested by the persistent SAM growth in the presence of exogenous CLV3p signals, as well as elevated WUS expression and repressed WUS-specific target genes. Taken together, these results suggest that MPK3 and MPK6 activated by CLV3p signals through mainly CLV1 and BAM1 receptors are key regulators controlling stem cell homeostasis in the SAM.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Brotes de la Planta/metabolismo , Células Madre/metabolismo , Proteínas de Arabidopsis/genética , Homeostasis/fisiología , Meristema/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Serina-Treonina Quinasas/metabolismo
16.
Nature ; 473(7347): 376-9, 2011 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-21499263

RESUMEN

Stem cells in the shoot apical meristem (SAM) of plants are the self-renewable reservoir for leaf, stem and flower organogenesis. In nature, disease-free plants can be regenerated from SAM despite infections elsewhere, which underlies a horticultural practice for decades. However, the molecular basis of the SAM immunity remains unclear. Here we show that the CLAVATA3 peptide (CLV3p), expressed and secreted from stem cells and functioning as a key regulator of stem-cell homeostasis in the SAM of Arabidopsis, can trigger immune signalling and pathogen resistance via the flagellin receptor kinase FLS2 (refs 5, 6). CLV3p-FLS2 signalling acts independently from the stem-cell signalling pathway mediated through CLV1 and CLV2 receptors, and is uncoupled from FLS2-mediated growth suppression. Endogenous CLV3p perception in the SAM by a pattern recognition receptor for bacterial flagellin, FLS2, breaks the previously defined self and non-self discrimination in innate immunity. The dual perception of CLV3p illustrates co-evolution of plant peptide and receptor kinase signalling for both development and immunity. The enhanced immunity in SAM or germ lines may represent a common strategy towards immortal fate in plants and animals.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Arabidopsis/metabolismo , Inmunidad Innata , Proteínas Quinasas/metabolismo , Transducción de Señal , Células Madre/inmunología , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Flagelina/química , Flagelina/inmunología , Homeostasis , Meristema/citología , Meristema/inmunología , Brotes de la Planta/citología , Brotes de la Planta/inmunología , Células Madre/citología
17.
J Plant Biol ; 60(5): 506-512, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30310351

RESUMEN

Plant shoot stem cell pool is constantly maintained by a negative feedback loop through peptide-receptor mediated signaling pathway. CLAVATA3 (CLV3) encode a 96 amino-acid protein which is processed to 12-amino-acid or arabinosylated 13-amino-acid peptides, acting as a ligand signal to regulate stem cell homeostasis in the shoot apical meristem (SAM). Although arabinosylated 13-amino-acid CLV3 peptide (CLV3p) shows more significant binding affinity to its receptors and biological activities in the SAM, the physiological function of two mature forms of CLV3p remained an unresolved puzzle in the past decade due to the technical difficulties of arabinosylation modification in the peptide synthesis. Here, we analyzed the role of two mature CLV3 peptides with newly synthesized arabinosylated peptide. Beside shoot meristem phenotypes, arabinosylated CLV3p showed the conventional trait of CLV2-dependent root growth inhibition. Moreover, both 12-amino-acid and arabinosylated 13-amino-acid CLV3 peptides have analogous activities in shoot stem cell signaling. Notably, we demonstrated that non-arabinosylated 12-amino acid CLV3p can affect shoot stem cell signaling at the physiological level unlike previously suggested (Ohyama et al., 2009; Shinohara and Matsubayashi, 2013; Shinohara and Matsubayashi, 2015). Therefore, these results support the physiological role of the 12-amino-acid CLV3p in shoot stem cell signaling in the deficient condition of arabinosylated 13-amino-acid CLV3p in Arabidopsis thaliana.

18.
Plant Cell ; 25(5): 1507-22, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23645631

RESUMEN

Artificial microRNA (amiRNA) approaches offer a powerful strategy for targeted gene manipulation in any plant species. However, the current unpredictability of amiRNA efficacy has limited broad application of this promising technology. To address this, we developed epitope-tagged protein-based amiRNA (ETPamir) screens, in which target mRNAs encoding epitope-tagged proteins were constitutively or inducibly coexpressed in protoplasts with amiRNA candidates targeting single or multiple genes. This design allowed parallel quantification of target proteins and mRNAs to define amiRNA efficacy and mechanism of action, circumventing unpredictable amiRNA expression/processing and antibody unavailability. Systematic evaluation of 63 amiRNAs in 79 ETPamir screens for 16 target genes revealed a simple, effective solution for selecting optimal amiRNAs from hundreds of computational predictions, reaching ∼100% gene silencing in plant cells and null phenotypes in transgenic plants. Optimal amiRNAs predominantly mediated highly specific translational repression at 5' coding regions with limited mRNA decay or cleavage. Our screens were easily applied to diverse plant species, including Arabidopsis thaliana, tobacco (Nicotiana benthamiana), tomato (Solanum lycopersicum), sunflower (Helianthus annuus), Catharanthus roseus, maize (Zea mays) and rice (Oryza sativa), and effectively validated predicted natural miRNA targets. These screens could improve plant research and crop engineering by making amiRNA a more predictable and manageable genetic and functional genomic technology.


Asunto(s)
Silenciador del Gen , MicroARNs/genética , Proteínas de Plantas/genética , Plantas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Secuencia de Bases , Immunoblotting , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , MicroARNs/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plantas/clasificación , Plantas/metabolismo , Plantas Modificadas Genéticamente , Protoplastos/citología , Protoplastos/metabolismo , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Nicotiana/genética , Nicotiana/metabolismo , Zea mays/genética , Zea mays/metabolismo
19.
Nature ; 464(7287): 418-22, 2010 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-20164835

RESUMEN

Innate immunity represents the first line of inducible defence against microbial infection in plants and animals. In both kingdoms, recognition of pathogen- or microbe-associated molecular patterns (PAMPs or MAMPs, respectively), such as flagellin, initiates convergent signalling pathways involving mitogen-activated protein kinase (MAPK) cascades and global transcriptional changes to boost immunity. Although Ca(2+) has long been recognized as an essential and conserved primary mediator in plant defence responses, how Ca(2+) signals are sensed and relayed into early MAMP signalling is unknown. Using a functional genomic screen and genome-wide gene expression profiling, here we show that four calcium-dependent protein kinases (CDPKs) are Ca(2+)-sensor protein kinases critical for transcriptional reprogramming in plant innate immune signalling. Unexpectedly, CDPKs and MAPK cascades act differentially in four MAMP-mediated regulatory programs to control early genes involved in the synthesis of defence peptides and metabolites, cell wall modifications and redox signalling. Transcriptome profile comparison suggests that CDPKs are the convergence point of signalling triggered by most MAMPs. Double, triple and quadruple cpk mutant plants display progressively diminished oxidative burst and gene activation induced by the 22-amino-acid peptide flg22, as well as compromised pathogen defence. In contrast to negative roles of calmodulin and a calmodulin-activated transcription factor in plant defence, the present study reveals Ca(2+) signalling complexity and demonstrates key positive roles of specific CDPKs in initial MAMP signalling.


Asunto(s)
Arabidopsis/enzimología , Arabidopsis/inmunología , Inmunidad Innata/inmunología , Proteínas Quinasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Señalización del Calcio , Flagelina/química , Flagelina/inmunología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Sistema de Señalización de MAP Quinasas , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Estallido Respiratorio , Transcripción Genética
20.
Plant J ; 77(2): 235-45, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24237140

RESUMEN

Pseudomonas syringae delivers a plethora of effector proteins into host cells to sabotage immune responses and modulate physiology to favor infection. The P. syringae pv. tomato DC3000 effector HopF2 suppresses Arabidopsis innate immunity triggered by multiple microbe-associated molecular patterns (MAMP) at the plasma membrane. We show here that HopF2 possesses distinct mechanisms for suppression of two branches of MAMP-activated MAP kinase (MAPK) cascades. In addition to blocking MKK5 (MAPK kinase 5) activation in the MEKK1 (MAPK kinase kinase 1)/MEKKs-MKK4/5-MPK3/6 cascade, HopF2 targets additional component(s) upstream of MEKK1 in the MEKK1-MKK1/2-MPK4 cascade and the plasma membrane-localized receptor-like cytoplasmic kinase BIK1 and its homologs. We further show that HopF2 directly targets BAK1, a plasma membrane-localized receptor-like kinase that is involved in multiple MAMP signaling. The interaction between BAK1 and HopF2 and between two other P. syringae effectors, AvrPto and AvrPtoB, was confirmed in vivo and in vitro. Consistent with BAK1 as a physiological target of AvrPto, AvrPtoB and HopF2, the strong growth defects or lethality associated with ectopic expression of these effectors in wild-type Arabidopsis transgenic plants were largely alleviated in bak1 mutant plants. Thus, our results provide genetic evidence to show that BAK1 is a physiological target of AvrPto, AvrPtoB and HopF2. Identification of BAK1 as an additional target of HopF2 virulence not only explains HopF2 suppression of multiple MAMP signaling at the plasma membrane, but also supports the notion that pathogen virulence effectors act through multiple targets in host cells.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/inmunología , Proteínas Bacterianas/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Pseudomonas syringae/metabolismo , Fosforilación , Pseudomonas syringae/patogenicidad , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA