Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(2)2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35054836

RESUMEN

Crop production is a serious challenge to provide food for the 10 billion individuals forecasted to live across the globe in 2050. The scientists' emphasize establishing an equilibrium among diversity and quality of crops by enhancing yield to fulfill the increasing demand for food supply sustainably. The exploitation of genetic resources using genomics and metabolomics strategies can help generate resilient plants against stressors in the future. The innovation of the next-generation sequencing (NGS) strategies laid the foundation to unveil various plants' genetic potential and help us to understand the domestication process to unmask the genetic potential among wild-type plants to utilize for crop improvement. Nowadays, NGS is generating massive genomic resources using wild-type and domesticated plants grown under normal and harsh environments to explore the stress regulatory factors and determine the key metabolites. Improved food nutritional value is also the key to eradicating malnutrition problems around the globe, which could be attained by employing the knowledge gained through NGS and metabolomics to achieve suitability in crop yield. Advanced technologies can further enhance our understanding in defining the strategy to obtain a specific phenotype of a crop. Integration among bioinformatic tools and molecular techniques, such as marker-assisted, QTLs mapping, creation of reference genome, de novo genome assembly, pan- and/or super-pan-genomes, etc., will boost breeding programs. The current article provides sequential progress in NGS technologies, a broad application of NGS, enhancement of genetic manipulation resources, and understanding the crop response to stress by producing plant metabolites. The NGS and metabolomics utilization in generating stress-tolerant plants/crops without deteriorating a natural ecosystem is considered a sustainable way to improve agriculture production. This highlighted knowledge also provides useful research that explores the suitable resources for agriculture sustainability.


Asunto(s)
Productos Agrícolas/crecimiento & desarrollo , Metabolómica/métodos , Análisis de Secuencia de ADN/métodos , Productos Agrícolas/química , Productos Agrícolas/genética , Inocuidad de los Alimentos , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Valor Nutritivo , Fitomejoramiento
2.
PeerJ ; 11: e14983, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36967996

RESUMEN

Sustainable maize production under changing climatic conditions, especially heat and water stress conditions is one of the key challenges that need to be addressed immediately. The current field study was designed to evaluate the impact of water stress on morpho-physiological, biochemical, reactive oxygen species, antioxidant activity and kernel quality traits at different plant growth stages in maize hybrids. Four indigenous i.e., YH-5427, YH-5482, YH-5395, JPL-1908, and one multinational maize hybrid i.e., NK-8441 (Syngenta Seeds) were used for the study. Four stress treatments (i) Control (ii) 3-week water stress at pre-flowering stage (iii) 3-week water stress at anthesis stage (iv) 3-week water stress at grain filling/post-anthesis stage. The presence of significant oxidative stress was revealed by the overproduction of reactive oxygen species (ROXs) i.e., H2O2 (1.9 to 5.8 µmole g-1 FW) and malondialdehyde (120.5 to 169.0 nmole g-1 FW) leading to severe negative impacts on kernel yield. Moreover, a severe reduction in photosynthetic ability (50.6%, from 34.0 to 16.8 µmole m-2 s-1), lower transpirational rate (31.3%, from 3.2 to 2.2 mmol m-2 s-1), alterations in plant anatomy, reduced pigments stability, and deterioration of kernel quality was attributed to water stress. Water stress affected all the three studied growth stages, the pre-flowering stage being the most vulnerable while the post-anthesis stage was the least affected stage to drought stress. Antioxidant activity was observed to increase under all stress conditions in all maize hybrids, however, the highest antioxidant activity was recorded at the anthesis stage and in maize hybrids YH-5427 i.e., T-SOD activity was increased by 61.3% from 37.5 U mg-1 pro to 60.5 U mg-1 pro while CAT activity was maximum under water stress conditions 8.3 U mg-1 pro as compared to 10.3 U mg-1 pro under control (19.3%). The overall performance of maize hybrid YH-5427 was much more promising than other hybrids, attributed to its higher photosynthetic activity, and better antioxidant defense mechanism. Therefore, this hybrid could be recommended for cultivation in drought-prone areas.


Asunto(s)
Antioxidantes , Zea mays , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Deshidratación , Peróxido de Hidrógeno/metabolismo
3.
Front Plant Sci ; 13: 898823, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646037

RESUMEN

Maize is one of the most important field crops considering its utilization as food, feed, fodder, and biofuel. However, the sustainability of its production is under serious threat of heat and drought stresses, as these stresses could hamper crop growth, causing a significant loss to kernel yield. The research study was carried out at Maize and Millets Research Institute, Yusafwala-Sahiwal for two consecutive spring seasons (2019-20 and 2020-21) under a split-split plot design. The current study explained the individual and combined effects of drought and heat stresses on morphology, phenology, physiology, reactive oxygen species (stocktickerROS), antioxidant status, and kernel quality traits in four indigenous (YH-5482, YH-5427, YH-5404, and YH-1898) and one multinational maize hybrid (P-1543). Stress treatments, i.e., drought, heat, and drought+heat, were applied ten days before tasseling and lasted for 21 days. The results revealed the incidence of oxidative stress due to overproduction of Hydrogen peroxide; H2O2 (control: 1.9, heat+drought: 5.8), and Malondialdehyde; stocktickerMDA (control: 116.5, heat+drought: 193), leading to reduced photosynthetic ability (control: 31.8, heat:16.5), alterations in plant morphology, decrease in kernel yield (control: 10865 kg ha-1, heat+drought: 5564 kg ha-1), and quality-related traits. Although all the stress treatments induced the accumulation of stress-responsive osmolytes and enzymatic antioxidants to cope with the negative impact of osmotic stress, the effect of combined drought + heat stress was much higher. The overall performance of indigenous maize hybrid YH-5427 was much more promising than the other hybrids, attributed to its better tolerance of drought and heat stresses. Such stress tolerance was attributed to maintaining photosynthetic activity, a potent antioxidant and osmolyte-based defense mechanisms, and minimum reductions in yield-related traits, which assured the maximum kernel yield under all stress treatments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA