Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Card Fail ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38754697

RESUMEN

BACKGROUND: Living with a left ventricular assist device (LVAD) comes with potentially burdensome aspects posed by, for example, battery packs and device drivelines. We aim to describe the impact of living with a durable LVAD on sexual quality of life (QOL), depression, and anxiety in patients and their partners. METHODS AND RESULTS: In this single-center, prospective, observational study, patients ≥4 months after LVAD implantation and their partners completed the Sexual Activities in Left Ventricular Assist Device Patients or Partners questionnaire to assess their sexual QOL, the 8-item Patient Health Questionnaire (PHQ-8) to assess symptoms of depression and the 7-item Generalized Anxiety Disorder (GAD-7) to assess symptoms of anxiety. Sixty patients and 60 partners completed the questionnaires 2.3 ± 1.9 years after implantation. Eighty-seven percent of the patients and 13% of partners were male. The mean age of patients was 57.4 ± 13.3 years, with 90% living with their partner. Ten percent of patients and 18% of partners had a current diagnosis of a psychological condition, most frequently depression and/or anxiety. Overall, 49% of participants indicated the LVAD influenced their sexual activity (patients 53% vs partners 45%; P = .33). Disturbances from the driveline were the most common problem indicated. Twenty-four percent of participants had scored in the mild to moderate depression range on the PHQ-8 and 28% scored in the mild to severe anxiety range on the GAD-7. The median total GAD-7 (1 [interquartile range (IQR) 0-4.25] vs 2.5 [IQR 0-5]; P = .06) were comparable between patients and partners; whereas patients had a higher total PHQ-8 score (3 [IQR 0-5.25] vs 1 [IQR 0-3.25]; P = .02). A preference to receive information regarding sexuality while on LVAD support was indicated by 54% of participants and did not differ between patients and partners (P > .99). Written resources were the most commonly preferred source of information. CONCLUSIONS: LVADs severely affect the sexual QOL for patients and their partners. The presence of a driveline is a major cause for concern. Patients prefer receiving written information on how to improve their sexual QOL.

2.
Artículo en Inglés | MEDLINE | ID: mdl-33619059

RESUMEN

Tuberculosis, caused by Mycobacterium tuberculosis, is an urgent global health problem requiring new drugs, new drug targets and an increased understanding of antibiotic resistance. We have determined the mode of resistance to a series of arylamide compounds in M. tuberculosis We isolated M. tuberculosis resistant mutants to two arylamide compounds which are inhibitory to growth under host-relevant conditions (butyrate as a sole carbon source). Thirteen mutants were characterized, and all had mutations in Rv2571c; mutations included a premature stop codon and frameshifts as well as non-synonymous polymorphisms. We isolated a further ten strains with mutations in Rv2571c with resistance. Complementation with a wild-type copy of Rv2571c restored arylamide sensitivity. Over-expression of Rv2571c was toxic in both wild-type and mutant backgrounds. We constructed M. tuberculosis strains with an unmarked deletion of the entire Rv2571c gene by homologous recombination and confirmed that these were resistant to the arylamide series. Rv2571c is a member of the aromatic amino acid transport family and has a fusaric acid resistance domain which is associated with compound transport. Since loss or inactivation of Rv2571c leads to resistance, we propose that Rv2571c is involved in the import of arylamide compounds.

3.
Trends Biochem Sci ; 43(5): 342-357, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29573882

RESUMEN

The menaquinone, siderophore, and tryptophan (MST) enzymes transform chorismate to generate precursor molecules for the biosynthetic pathways defined in their name. Kinetic data, both steady-state and transient-state, and X-ray crystal structures indicate that these enzymes are highly conserved both in mechanism and in structure. Because these enzymes are found in pathogens but not in humans, there is considerable interest in these enzymes as drug design targets. While great progress has been made in defining enzyme structure and mechanism, inhibitor design has lagged behind. This review provides a detailed description of the evidence that begins to unravel the mystery of how the MST enzymes work, and how that information has been used in inhibitor design.


Asunto(s)
Liasas/metabolismo , Sideróforos/metabolismo , Triptófano/metabolismo , Vitamina K 2/metabolismo , Humanos , Cinética , Liasas/química , Modelos Moleculares , Sideróforos/química , Triptófano/química , Vitamina K 2/química
4.
Antimicrob Agents Chemother ; 66(4): e0204121, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35262374

RESUMEN

We previously identified a series of triazolopyrimidines with antitubercular activity. We determined that Mycobacterium tuberculosis strains with mutations in QcrB, a subunit of the cytochrome bcc-aa3 supercomplex, were resistant. A cytochrome bd oxidase deletion strain was more sensitive to this series. We isolated resistant mutants with mutations in Rv1339. Compounds led to the depletion of intracellular ATP levels and were active against intracellular bacteria, but they did not inhibit human mitochondrial respiration. These data are consistent with triazolopyrimidines acting via inhibition of QcrB.


Asunto(s)
Mycobacterium tuberculosis , Antituberculosos/farmacología , Citocromos , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Respiración
5.
J Biol Inorg Chem ; 27(6): 541-551, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35513576

RESUMEN

Pseudomonas aeruginosa is an increasingly antibiotic-resistant pathogen that causes severe lung infections, burn wound infections, and diabetic foot infections. P. aeruginosa produces the siderophore pyochelin through the use of a non-ribosomal peptide synthetase (NRPS) biosynthetic pathway. Targeting members of siderophore NRPS proteins is one avenue currently under investigation for the development of new antibiotics against antibiotic-resistant organisms. Here, the crystal structure of the pyochelin adenylation domain PchD is reported. The structure was solved to 2.11 Å when co-crystallized with the adenylation inhibitor 5'-O-(N-salicylsulfamoyl)adenosine (salicyl-AMS) and to 1.69 Å with a modified version of salicyl-AMS designed to target an active site cysteine (4-cyano-salicyl-AMS). In the structures, PchD adopts the adenylation conformation, similar to that reported for AB3403 from Acinetobacter baumannii.


Asunto(s)
Pseudomonas aeruginosa , Sideróforos , Antibacterianos/metabolismo , Antibacterianos/farmacología , Fenoles , Pseudomonas aeruginosa/metabolismo , Salicilatos/metabolismo , Sideróforos/química , Tiazoles
6.
Immunity ; 39(6): 1019-31, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24332030

RESUMEN

Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor mediating innate antimicrobial immunity. It catalyzes the synthesis of a noncanonical cyclic dinucleotide, 2',5' cGAMP, that binds to STING and mediates the activation of TBK1 and IRF-3. Activated IRF-3 translocates to the nucleus and initiates the transcription of the IFN-ß gene. The structure of mouse cGAS bound to an 18 bp dsDNA revealed that cGAS interacts with dsDNA through two binding sites, forming a 2:2 complex. Enzyme assays and IFN-ß reporter assays of cGAS mutants demonstrated that interactions at both DNA binding sites are essential for cGAS activation. Mutagenesis and DNA binding studies showed that the two sites bind dsDNA cooperatively and that site B plays a critical role in DNA binding. The structure of mouse cGAS bound to dsDNA and 2',5' cGAMP provided insight into the catalytic mechanism of cGAS. These results demonstrated that cGAS is activated by dsDNA-induced oligomerization.


Asunto(s)
ADN/metabolismo , Modelos Moleculares , Nucleotidiltransferasas/química , Nucleotidiltransferasas/metabolismo , Animales , Sitios de Unión/genética , Dominio Catalítico , Humanos , Ratones , Nucleótidos Cíclicos/metabolismo , Nucleotidiltransferasas/genética , Unión Proteica , Estructura Cuaternaria de Proteína
7.
Infect Immun ; 88(7)2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32122941

RESUMEN

In high-income countries, the leading causes of death are noncommunicable diseases (NCDs), such as obesity, cancer, and cardiovascular disease. An important feature of most NCDs is inflammation-induced gut dysbiosis characterized by a shift in the microbial community structure from obligate to facultative anaerobes such as Proteobacteria This microbial imbalance can contribute to disease pathogenesis by either a depletion in or the production of microbiota-derived metabolites. However, little is known about the mechanism by which inflammation-mediated changes in host physiology disrupt the microbial ecosystem in our large intestine leading to disease. Recent work by our group suggests that during gut homeostasis, epithelial hypoxia derived from peroxisome proliferator-activated receptor γ (PPAR-γ)-dependent ß-oxidation of microbiota-derived short-chain fatty acids limits oxygen availability in the colon, thereby maintaining a balanced microbial community. During inflammation, disruption in gut anaerobiosis drives expansion of facultative anaerobic Enterobacteriaceae, regardless of their pathogenic potential. Therefore, our research group is currently exploring the concept that dysbiosis-associated expansion of Enterobacteriaceae can be viewed as a microbial signature of epithelial dysfunction and may play a greater role in different models of NCDs, including diet-induced obesity, atherosclerosis, and inflammation-associated colorectal cancer.


Asunto(s)
Disbiosis , Metabolismo Energético , Microbioma Gastrointestinal , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Enfermedades no Transmisibles/epidemiología , Animales , Colon/metabolismo , Colon/microbiología , Susceptibilidad a Enfermedades , Enterobacteriaceae/metabolismo , Humanos , Obesidad/complicaciones , Obesidad/metabolismo , Oxidación-Reducción , Medición de Riesgo , Factores de Riesgo
8.
Proc Natl Acad Sci U S A ; 113(24): E3403-12, 2016 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-27302953

RESUMEN

Type I IFNs are key cytokines mediating innate antiviral immunity. cGMP-AMP synthase, ritinoic acid-inducible protein 1 (RIG-I)-like receptors, and Toll-like receptors recognize microbial double-stranded (ds)DNA, dsRNA, and LPS to induce the expression of type I IFNs. These signaling pathways converge at the recruitment and activation of the transcription factor IRF-3 (IFN regulatory factor 3). The adaptor proteins STING (stimulator of IFN genes), MAVS (mitochondrial antiviral signaling), and TRIF (TIR domain-containing adaptor inducing IFN-ß) mediate the recruitment of IRF-3 through a conserved pLxIS motif. Here we show that the pLxIS motif of phosphorylated STING, MAVS, and TRIF binds to IRF-3 in a similar manner, whereas residues upstream of the motif confer specificity. The structure of the IRF-3 phosphomimetic mutant S386/396E bound to the cAMP response element binding protein (CREB)-binding protein reveals that the pLxIS motif also mediates IRF-3 dimerization and activation. Moreover, rotavirus NSP1 (nonstructural protein 1) employs a pLxIS motif to target IRF-3 for degradation, but phosphorylation of NSP1 is not required for its activity. These results suggest a concerted mechanism for the recruitment and activation of IRF-3 that can be subverted by viral proteins to evade innate immune responses.


Asunto(s)
Factor 3 Regulador del Interferón/química , Rotavirus/química , Proteínas no Estructurales Virales/química , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/inmunología , Secuencias de Aminoácidos , Proteína de Unión a CREB/química , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/inmunología , Humanos , Evasión Inmune , Inmunidad Innata , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/inmunología , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Dominios Proteicos , Rotavirus/genética , Rotavirus/inmunología , Infecciones por Rotavirus/genética , Infecciones por Rotavirus/inmunología , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología
9.
Biochem J ; 474(3): 427-443, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27872164

RESUMEN

Staphylococcus epidermidis is an opportunistic pathogen that can form robust biofilms that render the bacteria resistant to antibiotic action and immune responses. Intercellular adhesion in S. epidermidis biofilms is mediated by the cell wall-associated accumulation-associated protein (Aap), via zinc-mediated self-assembly of its B-repeat region. This region contains up to 17 nearly identical sequence repeats, with each repeat assumed to be functionally equivalent. However, Aap B-repeats exist as two subtypes, defined by a cluster of consensus or variant amino acids. These variable residues are positioned near the zinc-binding (and dimerization) site and the stability determinant for the B-repeat fold. We have characterized four B-repeat constructs to assess the functional relevance of the two Aap B-repeat subtypes. Analytical ultracentrifugation experiments demonstrated that constructs with the variant sequence show reduced or absent Zn2+-induced dimerization. Likewise, circular dichroism thermal denaturation experiments showed that the variant sequence could significantly stabilize the fold, depending on its location within the construct. Crystal structures of three of the constructs revealed that the side chains from the variant sequence form an extensive bonding network that can stabilize the fold. Furthermore, altered distribution of charged residues between consensus and variant sequences changes the electrostatic potential in the vicinity of the Zn2+-binding site, providing a mechanistic explanation for the loss of zinc-induced dimerization in the variant constructs. These data suggest an assembly code that defines preferred oligomerization modes of the B-repeat region of Aap and a slip-grip model for initial contact followed by firm intercellular adhesion during biofilm formation.


Asunto(s)
Adhesión Bacteriana/fisiología , Proteínas Bacterianas/química , Biopelículas/crecimiento & desarrollo , Variación Genética , Staphylococcus epidermidis/fisiología , Zinc/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Cinética , Modelos Moleculares , Unión Proteica , Desnaturalización Proteica , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estabilidad Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Electricidad Estática , Zinc/metabolismo
10.
Artículo en Inglés | MEDLINE | ID: mdl-28760892

RESUMEN

Oxazolidinones are promising candidates for the treatment of Mycobacterium tuberculosis infections. We isolated linezolid-resistant strains from H37Rv (Euro-American) and HN878 (East-Asian) strains; resistance frequencies were similar in the two strains. Mutations were identified in ribosomal protein L3 (RplC) and the 23S rRNA (rrl). All mutant strains were cross resistant to sutezolid; a subset was cross resistant to chloramphenicol. Mutations in rrl led to growth impairment and decreased fitness that may limit spread in clinical settings.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple/genética , Linezolid/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Inhibidores de la Síntesis de la Proteína/farmacología , ARN Ribosómico 23S/genética , Proteínas Ribosómicas/genética , Antituberculosos/farmacología , Secuencia de Bases , Sitios de Unión , Cloranfenicol/farmacología , ADN Bacteriano/genética , Humanos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/aislamiento & purificación , Oxazolidinonas/farmacología , Proteína Ribosomal L3 , Análisis de Secuencia de ADN , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/microbiología
12.
Cell Host Microbe ; 32(6): 887-899.e6, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38806059

RESUMEN

Inflammation boosts the availability of electron acceptors in the intestinal lumen, creating a favorable niche for pathogenic Enterobacteriaceae. However, the mechanisms linking intestinal inflammation-mediated changes in luminal metabolites and pathogen expansion remain unclear. Here, we show that mucosal inflammation induced by Salmonella enterica serovar Typhimurium (S. Tm) infection increases intestinal levels of the amino acid aspartate. S. Tm used aspartate-ammonia lyase (aspA)-dependent fumarate respiration for growth in the murine gut only during inflammation. AspA-dependent growth advantage was abolished in the gut of germ-free mice and restored in gnotobiotic mice colonized with members of the classes Bacteroidia and Clostridia. Reactive oxygen species (ROS) produced during the host response caused lysis of commensal microbes, resulting in the release of microbiota-derived aspartate that was used by S. Tm, in concert with nitrate-dependent anaerobic respiration, to outcompete commensal Enterobacteriaceae. Our findings demonstrate the role of microbiota-derived amino acids in driving respiration-dependent S. Tm expansion during colitis.


Asunto(s)
Ácido Aspártico , Microbioma Gastrointestinal , Especies Reactivas de Oxígeno , Salmonella typhimurium , Animales , Ratones , Especies Reactivas de Oxígeno/metabolismo , Ácido Aspártico/metabolismo , Colitis/microbiología , Colitis/metabolismo , Ratones Endogámicos C57BL , Enterobacteriaceae/metabolismo , Vida Libre de Gérmenes , Inflamación/microbiología , Inflamación/metabolismo , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/inmunología
13.
PLoS Pathog ; 7(11): e1002360, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22072973

RESUMEN

Antimicrobial peptides (AMPs) contribute to host innate immune defense and are a critical component to control bacterial infection. Nontypeable Haemophilus influenzae (NTHI) is a commensal inhabitant of the human nasopharyngeal mucosa, yet is commonly associated with opportunistic infections of the upper and lower respiratory tracts. An important aspect of NTHI virulence is the ability to avert bactericidal effects of host-derived antimicrobial peptides (AMPs). The Sap (sensitivity to antimicrobial peptides) ABC transporter equips NTHI to resist AMPs, although the mechanism of this resistance has remained undefined. We previously determined that the periplasmic binding protein SapA bound AMPs and was required for NTHI virulence in vivo. We now demonstrate, by antibody-mediated neutralization of AMP in vivo, that SapA functions to directly counter AMP lethality during NTHI infection. We hypothesized that SapA would deliver AMPs to the Sap inner membrane complex for transport into the bacterial cytoplasm. We observed that AMPs localize to the bacterial cytoplasm of the parental NTHI strain and were susceptible to cytoplasmic peptidase activity. In striking contrast, AMPs accumulated in the periplasm of bacteria lacking a functional Sap permease complex. These data support a mechanism of Sap mediated import of AMPs, a novel strategy to reduce periplasmic and inner membrane accumulation of these host defense peptides.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas Bacterianas/metabolismo , Infecciones por Haemophilus/microbiología , Haemophilus influenzae/metabolismo , Haemophilus influenzae/patogenicidad , Animales , Péptidos Catiónicos Antimicrobianos/inmunología , Chinchilla , Infecciones por Haemophilus/metabolismo , Haemophilus influenzae/inmunología , Unión Proteica
14.
Cell Host Microbe ; 31(10): 1604-1619.e10, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37794592

RESUMEN

The mechanisms by which the early-life microbiota protects against environmental factors that promote childhood obesity remain largely unknown. Using a mouse model in which young mice are simultaneously exposed to antibiotics and a high-fat (HF) diet, we show that Lactobacillus species, predominant members of the small intestine (SI) microbiota, regulate intestinal epithelial cells (IECs) to limit diet-induced obesity during early life. A Lactobacillus-derived metabolite, phenyllactic acid (PLA), protects against metabolic dysfunction caused by early-life exposure to antibiotics and a HF diet by increasing the abundance of peroxisome proliferator-activated receptor γ (PPAR-γ) in SI IECs. Therefore, PLA is a microbiota-derived metabolite that activates protective pathways in the small intestinal epithelium to regulate intestinal lipid metabolism and prevent antibiotic-associated obesity during early life.


Asunto(s)
Microbiota , Obesidad Infantil , Humanos , Niño , Animales , Ratones , Metabolismo de los Lípidos , Dieta Alta en Grasa/efectos adversos , Antibacterianos , Poliésteres , Ratones Endogámicos C57BL
15.
Cell Rep ; 42(2): 112128, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36807140

RESUMEN

The cytokine interleukin-23 (IL-23) is involved in the pathogenesis of inflammatory and autoimmune conditions including inflammatory bowel disease (IBD). IL23R is enriched in intestinal Tregs, yet whether IL-23 modulates intestinal Tregs remains unknown. Here, investigating IL-23R signaling in Tregs specifically, we show that colonic Tregs highly express Il23r compared with Tregs from other compartments and their frequency is reduced upon IL-23 administration and impairs Treg suppressive function. Similarly, colonic Treg frequency is increased in mice lacking Il23r specifically in Tregs and exhibits a competitive advantage over IL-23R-sufficient Tregs during inflammation. Finally, IL-23 antagonizes liver X receptor pathway, cellular cholesterol transporter Abca1, and increases Treg apoptosis. Our results show that IL-23R signaling regulates intestinal Tregs by increasing cell turnover, antagonizing suppression, and decreasing cholesterol efflux. These results suggest that IL-23 negatively regulates Tregs in the intestine with potential implications for promoting chronic inflammation in patients with IBD.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Animales , Humanos , Ratones , Colitis/patología , Factores de Transcripción Forkhead/metabolismo , Inflamación/patología , Enfermedades Inflamatorias del Intestino/patología , Interleucina-23/metabolismo , Linfocitos T Reguladores
16.
Cell Rep ; 38(1): 110180, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34986344

RESUMEN

The gut microbiota benefits the host by limiting enteric pathogen expansion (colonization resistance), partially via the production of inhibitory metabolites. Propionate, a short-chain fatty acid produced by microbiota members, is proposed to mediate colonization resistance against Salmonella enterica serovar Typhimurium (S. Tm). Here, we show that S. Tm overcomes the inhibitory effects of propionate by using it as a carbon source for anaerobic respiration. We determine that propionate metabolism provides an inflammation-dependent colonization advantage to S. Tm during infection. Such benefit is abolished in the intestinal lumen of Salmonella-infected germ-free mice. Interestingly, S. Tm propionate-mediated intestinal expansion is restored when germ-free mice are monocolonized with Bacteroides thetaiotaomicron (B. theta), a prominent propionate producer in the gut, but not when mice are monocolonized with a propionate-production-deficient B. theta strain. Taken together, our results reveal a strategy used by S. Tm to mitigate colonization resistance by metabolizing microbiota-derived propionate.


Asunto(s)
Anaerobiosis/fisiología , Propionatos/metabolismo , Salmonelosis Animal/patología , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/metabolismo , Animales , Antibiosis/fisiología , Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/metabolismo , Femenino , Microbioma Gastrointestinal/fisiología , Vida Libre de Gérmenes , Intestinos/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Noqueados , Nitratos/metabolismo
17.
Front Chem ; 9: 613349, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33996738

RESUMEN

The identification and development of new anti-tubercular agents are a priority research area. We identified the trifluoromethyl pyrimidinone series of compounds in a whole-cell screen against Mycobacterium tuberculosis. Fifteen primary hits had minimum inhibitory concentrations (MICs) with good potency IC90 is the concentration at which M. tuberculosis growth is inhibited by 90% (IC90 < 5 µM). We conducted a structure-activity relationship investigation for this series. We designed and synthesized an additional 44 molecules and tested all analogs for activity against M. tuberculosis and cytotoxicity against the HepG2 cell line. Substitution at the 5-position of the pyrimidinone with a wide range of groups, including branched and straight chain alkyl and benzyl groups, resulted in active molecules. Trifluoromethyl was the preferred group at the 6-position, but phenyl and benzyl groups were tolerated. The 2-pyridyl group was required for activity; substitution on the 5-position of the pyridyl ring was tolerated but not on the 6-position. Active molecules from the series demonstrated low selectivity, with cytotoxicity against eukaryotic cells being an issue. However, there were active and non-cytotoxic molecules; the most promising molecule had an MIC (IC90) of 4.9 µM with no cytotoxicity (IC50 > 100 µM). The series was inactive against Gram-negative bacteria but showed good activity against Gram-positive bacteria and yeast. A representative molecule from this series showed rapid concentration-dependent bactericidal activity against replicating M. tuberculosis bacilli with ~4 log kill in <7 days. Overall the biological properties were promising, if cytotoxicity could be reduced. There is scope for further medicinal chemistry optimization to improve the properties without major change in structural features.

18.
mBio ; 12(1)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33468700

RESUMEN

5-Aminosalicylic acid (5-ASA), a peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist, is a widely used first-line medication for the treatment of ulcerative colitis, but its anti-inflammatory mechanism is not fully resolved. Here, we show that 5-ASA ameliorates colitis in dextran sulfate sodium (DSS)-treated mice by activating PPAR-γ signaling in the intestinal epithelium. DSS-induced colitis was associated with a loss of epithelial hypoxia and a respiration-dependent luminal expansion of Escherichia coli, which could be ameliorated by treatment with 5-ASA. However, 5-ASA was no longer able to reduce inflammation, restore epithelial hypoxia, or blunt an expansion of E. coli in DSS-treated mice that lacked Pparg expression specifically in the intestinal epithelium. These data suggest that the anti-inflammatory activity of 5-ASA requires activation of epithelial PPAR-γ signaling, thus pointing to the intestinal epithelium as a potential target for therapeutic intervention in ulcerative colitis.IMPORTANCE An expansion of Enterobacterales in the fecal microbiota is a microbial signature of dysbiosis that is linked to many noncommunicable diseases, including ulcerative colitis. Here, we used Escherichia coli, a representative of the Enterobacterales, to show that its dysbiotic expansion during colitis can be remediated by modulating host epithelial metabolism. Dextran sulfate sodium (DSS)-induced colitis reduced mitochondrial activity in the colonic epithelium, thereby increasing the amount of oxygen available to fuel an E. coli expansion through aerobic respiration. Activation of epithelial peroxisome proliferator-activated receptor gamma (PPAR-γ) signaling with 5-aminosalicylic acid (5-ASA) was sufficient to restore mitochondrial activity and blunt a dysbiotic E. coli expansion. These data identify the host's epithelial metabolism as a potential treatment target to remediate microbial signatures of dysbiosis, such as a dysbiotic E. coli expansion in the fecal microbiota.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Colitis/tratamiento farmacológico , Disbiosis/tratamiento farmacológico , Escherichia coli/efectos de los fármacos , Mesalamina/farmacología , PPAR gamma/genética , Animales , Colitis/genética , Colitis/microbiología , Colitis/patología , Colon/efectos de los fármacos , Colon/microbiología , Colon/patología , Grupo Citocromo b/genética , Grupo Citocromo b/metabolismo , Sulfato de Dextran/administración & dosificación , Disbiosis/genética , Disbiosis/microbiología , Disbiosis/patología , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/patogenicidad , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Femenino , Regulación de la Expresión Génica , Inflamación , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Nitrato-Reductasa/genética , Nitrato-Reductasa/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , PPAR gamma/agonistas , PPAR gamma/metabolismo , Resultado del Tratamiento
19.
Science ; 373(6556): 813-818, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34385401

RESUMEN

A Western-style, high-fat diet promotes cardiovascular disease, in part because it is rich in choline, which is converted to trimethylamine (TMA) by the gut microbiota. However, whether diet-induced changes in intestinal physiology can alter the metabolic capacity of the microbiota remains unknown. Using a mouse model of diet-induced obesity, we show that chronic exposure to a high-fat diet escalates Escherichia coli choline catabolism by altering intestinal epithelial physiology. A high-fat diet impaired the bioenergetics of mitochondria in the colonic epithelium to increase the luminal bioavailability of oxygen and nitrate, thereby intensifying respiration-dependent choline catabolism of E. coli In turn, E. coli choline catabolism increased levels of circulating trimethlamine N-oxide, which is a potentially harmful metabolite generated by gut microbiota.


Asunto(s)
Colon/fisiología , Dieta Alta en Grasa , Escherichia coli/metabolismo , Mucosa Intestinal/fisiología , Metilaminas/metabolismo , Animales , Hipoxia de la Célula , Colina/administración & dosificación , Colina/metabolismo , Colon/citología , Metabolismo Energético , Células Epiteliales/fisiología , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Heces/microbiología , Microbioma Gastrointestinal , Inflamación , Mucosa Intestinal/metabolismo , Masculino , Metilaminas/sangre , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Nitratos/metabolismo , Obesidad , Consumo de Oxígeno
20.
mSphere ; 5(5)2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33055263

RESUMEN

The Mycobacterium tuberculosis protein MmpL3 performs an essential role in cell wall synthesis, since it effects the transport of trehalose monomycolates across the inner membrane. Numerous structurally diverse pharmacophores have been identified as inhibitors of MmpL3 largely based on the identification of resistant isolates with mutations in MmpL3. For some compounds, it is possible there are different primary or secondary targets. Here, we have investigated resistance to the spiral amine class of compounds. Isolation and sequencing of resistant mutants demonstrated that all had mutations in MmpL3. We hypothesized that if additional targets of this pharmacophore existed, then successive rounds to generate resistant isolates might reveal mutations in other loci. Since compounds were still active against resistant isolates, albeit with reduced potency, we isolated resistant mutants in this background at higher concentrations. After a second round of isolation with the spiral amine, we found additional mutations in MmpL3. To increase our chance of finding alternative targets, we ran a third round of isolation using a different molecule scaffold (AU1235, an adamantyl urea). Surprisingly, we obtained further mutations in MmpL3. Multiple mutations in MmpL3 increased the level and spectrum of resistance to different pharmacophores but did not incur a fitness cost in vitro These results support the hypothesis that MmpL3 is the primary mechanism of resistance and likely target for these pharmacophores.IMPORTANCEMycobacterium tuberculosis is a major global human pathogen, and new drugs and new drug targets are urgently required. Cell wall biosynthesis is a major target of current tuberculosis drugs and of new agents under development. Several new classes of molecules appear to have the same target, MmpL3, which is involved in the export and synthesis of the mycobacterial cell wall. However, there is still debate over whether MmpL3 is the primary or only target for these classes. We wanted to confirm the mechanism of resistance for one series. We identified mutations in MmpL3 which led to resistance to the spiral amine series. High-level resistance to these compounds and two other series was conferred by multiple mutations in the same protein (MmpL3). These mutations did not reduce growth rate in culture. These results support the hypothesis that MmpL3 is the primary mechanism of resistance and likely target for these pharmacophores.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana/genética , Proteínas de Transporte de Membrana/genética , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Transporte Biológico/efectos de los fármacos , Pared Celular/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Mutación , Tuberculosis/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA