Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
iScience ; 25(12): 105665, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36505931

RESUMEN

The tight junction protein claudin 6 (CLDN6) is differentially expressed on cancer cells with almost no expression in healthy tissue. However, achieving therapeutic MAb specificity for this 4 transmembrane protein is challenging because it is nearly identical to the widely expressed CLDN9, with only 3 extracellular amino acids different. Most other CLDN6 MAbs, including those in clinical development are cross-reactive with CLDN9, and several trials have now been stopped. Here we isolated rare MAbs that bind CLDN6 with up to picomolar affinity and display minimal cross-reactivity with CLDN9, 22 other CLDN family members, or across the human membrane proteome. Amino acid-level epitope mapping distinguished the binding sites of our MAbs from existing clinical-stage MAbs. Atomic-level epitope mapping identified the structural mechanism by which our MAbs differentiate CLDN6 and CLDN9 through steric hindrance at a single molecular contact point, the γ carbon on CLDN6 residue Q156.

2.
Front Bioeng Biotechnol ; 9: 734310, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35096785

RESUMEN

Despite advancements in procedures and patient care, mortality rates for neonatal recipients of the Norwood procedure, a palliation for single ventricle congenital malformations, remain high due to the use of a fixed-diameter blood shunt. In this study, a new geometrically tunable blood shunt was investigated to address limitations of the current treatment paradigm (e.g., Modified Blalock-Taussig Shunt) by allowing for controlled modulation of blood flow through the shunt to accommodate physiological changes due to the patient's growth. First, mathematical and computational cardiovascular models were established to investigate the hemodynamic requirements of growing neonatal patients with shunts and to inform design criteria for shunt diameter changes. Then, two stages of prototyping were performed to design, build and test responsive hydrogel systems that facilitate tuning of the shunt diameter by adjusting the hydrogel's degree of crosslinking. We examined two mechanisms to drive crosslinking: infusion of chemical crosslinking agents and near-UV photoinitiation. The growth model showed that 15-18% increases in shunt diameter were required to accommodate growing patients' increasing blood flow; similarly, the computational models demonstrated that blood flow magnitudes were in agreement with previous reports. These target levels of diameter increases were achieved experimentally with model hydrogel systems. We also verified that the photocrosslinkable hydrogel, composed of methacrylated dextran, was contact-nonhemolytic. These results demonstrate proof-of-concept feasibility and reflect the first steps in the development of this novel blood shunt. A tunable shunt design offers a new methodology to rebalance blood flow in this vulnerable patient population during growth and development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA