Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(9): 6252-6265, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38377559

RESUMEN

Conventional photodynamic therapy (PDT) is often limited in treating solid tumors due to hypoxic conditions that impede the generation of reactive oxygen species (ROS), which are critical for therapeutic efficacy. To address this issue, a fractionated PDT protocol has been suggested, wherein light irradiation is administered in stages separated by dark intervals to permit oxygen recovery during these breaks. However, the current photosensitizers used in fractionated PDT are incapable of sustaining ROS production during the dark intervals, leading to suboptimal therapeutic outcomes (Table S1). To circumvent this drawback, we have synthesized a novel photosensitizer based on a triple-anthracene derivative that is designed for prolonged ROS generation, even after the cessation of light exposure. Our study reveals a unique photodynamic action of these derivatives, facilitating the direct and effective disruption of biomolecules and significantly improving the efficacy of fractionated PDT (Table S2). Moreover, the existing photosensitizers lack imaging capabilities for monitoring, which constraints the fine-tuning of irradiation parameters (Table S1). Our triple-anthracene derivative also serves as an afterglow imaging agent, emitting sustained luminescence postirradiation. This imaging function allows for the precise optimization of intervals between PDT sessions and aids in determining the timing for subsequent irradiation, thus enabling meticulous control over therapy parameters. Utilizing our novel triple-anthracene photosensitizer, we have formulated a fractionated PDT regimen that effectively eliminates orthotopic pancreatic tumors. This investigation highlights the promise of employing long-persistent photodynamic activity in advanced fractionated PDT approaches to overcome the current limitations of PDT in solid tumor treatment.


Asunto(s)
Neoplasias , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fotoquimioterapia/métodos , Especies Reactivas de Oxígeno , Antracenos , Línea Celular Tumoral
2.
Phys Chem Chem Phys ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963731

RESUMEN

Photocatalytic degradation of organic pollutants in water is of great significance to the sustainable development of the environment, but encounters limited efficiency when a single compound is used. Thus, there have been enormous efforts to find novel photocatalytic heterostructured composites with high performance. In this work, a novel S-scheme heterostructure is constructed with BiOBr and Zn2+ doped C4N3 (Zn-C4N3) by a solvothermal method for efficient photodegradation of tetracycline (TC), a residual antibiotic difficult to be removed from the aquatic environment. Thanks to Zn2+-doping induced improvement in chemical affinity between Zn-C4N3 and BiOBr, well-formed Zn-C4N3/BiOBr heterostructured hollow spheres are formed. This structure can efficiently suppress fast recombination of photogenerated electron-hole pairs to enhance the photocatalytic activity of BiOBr dramatically. At a room temperature of 25 °C and neutral pH 7, the catalyst can degrade a significant portion of TC pollutants within 30 min under visible light. Also, the Zn-C4N3/BiOBr heterostructure displays good stability after recycling experiments. Free radical capture experiments and ESR tests show that ˙O2- is the main active substance for photocatalytic degradation of TC. This study provides new insights for constructing heterostructures with an intimate interface between the two phases for photocatalytic applications.

3.
Chemistry ; 29(42): e202301209, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37222343

RESUMEN

Organic afterglow nanoparticles are unique optical materials that emit light long after cessation of excitation. Due to their advantages of no need for real-time light excitation, avoiding autofluorescence, low imaging background, high signal-to-background ratio, deep tissue penetration, and high sensitivity, afterglow imaging technology has been widely used in cell tracking, biosensing, cancer diagnosis, and cancer therapy, which provides an effective technical method for the acquisition of molecular information with high sensitivity, specificity and real-time at the cellular and living level. In this review, we summarize and illustrate the recent progress of organic afterglow imaging, focusing on the mechanism of organic afterglow materials and their biological application. Furthermore, we also discuss the potential challenges and the further directions of this field.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Diagnóstico por Imagen , Neoplasias/diagnóstico por imagen , Luminiscencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA