Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Adv Mater ; : e2307123, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38533973

RESUMEN

Ultrasound imaging and ultrasound-mediated gene and drug delivery are rapidly advancing diagnostic and therapeutic methods; however, their use is often limited by the need for microbubbles, which cannot transverse many biological barriers due to their large size. Here, the authors introduce 50-nm gas-filled protein nanostructures derived from genetically engineered gas vesicles(GVs) that are referred to as 50 nmGVs. These diamond-shaped nanostructures have hydrodynamic diameters smaller than commercially available 50-nm gold nanoparticles and are, to the authors' knowledge, the smallest stable, free-floating bubbles made to date. 50 nmGVs can be produced in bacteria, purified through centrifugation, and remain stable for months. Interstitially injected 50 nmGVs can extravasate into lymphatic tissues and gain access to critical immune cell populations, and electron microscopy images of lymph node tissues reveal their subcellular location in antigen-presenting cells adjacent to lymphocytes. The authors anticipate that 50 nmGVs can substantially broaden the range of cells accessible to current ultrasound technologies and may generate applications beyond biomedicine as ultrasmall stable gas-filled nanomaterials.

2.
bioRxiv ; 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38645073

RESUMEN

We present a mechanically sheared image acquisition format for upright and open-top light-sheet microscopes that automatically places data in its proper spatial context. This approach, which reduces computational post-processing and eliminates unnecessary interpolation or duplication of the data, is demonstrated on an upright variant of Axially Swept Light-Sheet Microscopy (ASLM) that achieves a field of view, measuring 774 x 435 microns, that is 3.2-fold larger than previous models and a raw and isotropic resolution of ∼420 nm. Combined, we demonstrate the power of this approach by imaging sub-diffraction beads, cleared biological tissues, and expanded specimens.

3.
Nat Microbiol ; 9(4): 1021-1035, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38553608

RESUMEN

Gas vesicles (GVs) are microbial protein organelles that support cellular buoyancy. GV engineering has multiple applications, including reporter gene imaging, acoustic control and payload delivery. GVs often cluster into a honeycomb pattern to minimize occupancy of the cytosol. The underlying molecular mechanism and the influence on cellular physiology remain unknown. Using genetic, biochemical and imaging approaches, here we identify GvpU from Priestia megaterium as a protein that regulates GV clustering in vitro and upon expression in Escherichia coli. GvpU binds to the C-terminal tail of the core GV shell protein and undergoes a phase transition to form clusters in subsaturated solution. These properties of GvpU tune GV clustering and directly modulate bacterial fitness. GV variants can be designed with controllable sensitivity to GvpU-mediated clustering, enabling design of genetically tunable biosensors. Our findings elucidate the molecular mechanisms and functional roles of GV clustering, enabling its programmability for biomedical applications.


Asunto(s)
Orgánulos , Proteínas , Bacterias
4.
bioRxiv ; 2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38370811

RESUMEN

navigate is a turnkey, open-source software solution designed to enhance light-sheet fluorescence microscopy (LSFM) by integrating smart microscopy techniques into a user-friendly framework. It enables automated, intelligent imaging with a Python-based control system that supports GUI-reconfigurable acquisition routines and the integration of diverse hardware sets. As a comprehensive package, navigate democratizes access to advanced LSFM capabilities, facilitating the development and implementation of smart microscopy workflows without requiring deep programming knowledge or specialized expertise in light-sheet microscopy.

5.
bioRxiv ; 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37425762

RESUMEN

Ultrasound imaging and ultrasound-mediated gene and drug delivery are rapidly advancing diagnostic and therapeutic methods; however, their use is often limited by the need of microbubbles, which cannot transverse many biological barriers due to their large size. Here we introduce 50-nm gas-filled protein nanostructures derived from genetically engineered gas vesicles that we referred to as 50nm GVs. These diamond-shaped nanostructures have hydrodynamic diameters smaller than commercially available 50-nm gold nanoparticles and are, to our knowledge, the smallest stable, free-floating bubbles made to date. 50nm GVs can be produced in bacteria, purified through centrifugation, and remain stable for months. Interstitially injected 50nm GVs can extravasate into lymphatic tissues and gain access to critical immune cell populations, and electron microscopy images of lymph node tissues reveal their subcellular location in antigen-presenting cells adjacent to lymphocytes. We anticipate that 50nm GVs can substantially broaden the range of cells accessible to current ultrasound technologies and may generate applications beyond biomedicine as ultrasmall stable gas-filled nanomaterials.

6.
Cancer Lett ; 506: 142-151, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-33639204

RESUMEN

Metastasized cancer cells have an increased resistance to therapies leading to a drastic decrease in patient survival rates. However, our understanding of the cause for this enhanced resistance is lacking. In this study, we report that physically tight confinement during cancer cell migration triggers therapeutic resistance and induces cancer stem cell-like behavior including up-regulation in efflux proteins and in cancer stem cell related markers. Moreover, the re-localization of Yes-associated protein (YAP) to the cell nucleus indicated an elevated level of cytoskeletal tension. The increased cytoskeletal tension suggested that mechanical interactions between cancer cells and tight surroundings during metastasis is one of the factors that contributes to therapeutic resistance and acquisition of cancer stem cell (CSC) like features. With this system and supporting data, we are able to study cells with therapeutic resistance and CSC-like properties for the future purpose of developing new strategies for the treatment of metastatic cancer.


Asunto(s)
Proteínas de Ciclo Celular/genética , Movimiento Celular/genética , Glioblastoma/genética , Células Madre Neoplásicas/metabolismo , Factores de Transcripción/genética , Línea Celular Tumoral , Proliferación Celular/genética , Resistencia a Antineoplásicos/genética , Glioblastoma/patología , Humanos , Células Madre Neoplásicas/patología
7.
Biofabrication ; 12(3): 035019, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-32408287

RESUMEN

High-throughput screening (HTS) is a well-established approach for tumor-specific drug development because of its high efficiency and customizable selection of antineoplastic drugs. However, there is still a lack of an appropriate cell-based HTS specific for migratory cancer cells. In the study presented here, we created a novel assay (mHTS): a single-cell-level screening method targeting migratory cancer cells and can be applied in a high-throughput manner. This mHTS platform is based on microchannel devices (providing physical confinement during cell migration and limit migrating cells' proliferation rate) assembled 96-well plate (fitting to HTS manner). To determine the feasibility of this assay, we quantified the anti-migratory and anti-viability effects of several molecules (Cytochalasin D, Doxorubicin and AZD-6244) on migrating (creeping inside microchannel) glioblastoma multiforme (GBM) cells. After analyzing migration screening data that was collected on a single-cell-level, we were able to compare those drug's effects on cancer cells' migration velocity and uncovered the migration inhibiting potential of AZD (500 nM and 1000 nM). Viability data based on single-cell-level screening also allowed us to further understand the same drug's different lethality toward migrating and normal 2D cultured cancer cells. The Pre-classification of subpopulations enables us to study the heterogeneity of cancer and ensures our method's feasibility for a high-throughput manner. All these results proved our mHTS platform is suitable for single-cell-level anti-migration drug screening and has potential feasibility in promoting the development of anti-migratory-cancer-drug in a high-throughput manner.


Asunto(s)
Movimiento Celular , Ensayos Analíticos de Alto Rendimiento , Neoplasias/patología , Animales , Línea Celular Tumoral , Supervivencia Celular , Estudios de Factibilidad , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA