Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Plant J ; 116(6): 1856-1870, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37731154

RESUMEN

Seed number and harvesting ability in maize (Zea mays L.) are primarily determined by the architecture of female inflorescence, namely the ear. Therefore, ear morphogenesis contributes to grain yield and as such is one of the key target traits during maize breeding. However, the molecular networks of this highly dynamic and complex grain-bearing inflorescence remain largely unclear. As a first step toward characterizing these networks, we performed a high-spatio-temporal-resolution investigation of transcriptomes using 130 ear samples collected from developing ears with length from 0.1 mm to 19.0 cm. Comparisons of these mRNA populations indicated that these spatio-temporal transcriptomes were clearly separated into four distinct stages stages I, II, III, and IV. A total of 23 793 genes including 1513 transcription factors (TFs) were identified in the investigated developing ears. During the stage I of ear morphogenesis, 425 genes were predicted to be involved in a co-expression network established by eight hub TFs. Moreover, 9714 ear-specific genes were identified in the seven kinds of meristems. Additionally, 527 genes including 59 TFs were identified as especially expressed in ear and displayed high temporal specificity. These results provide a high-resolution atlas of gene activity during ear development and help to unravel the regulatory modules associated with the differentiation of the ear in maize.


Asunto(s)
Transcriptoma , Zea mays , Transcriptoma/genética , Zea mays/genética , Fitomejoramiento , Fenotipo , Semillas/genética , Grano Comestible/genética , Regulación de la Expresión Génica de las Plantas/genética
2.
Clin Chem ; 70(1): 339-349, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38175591

RESUMEN

BACKGROUND: B-cell maturation antigen is a pivotal therapeutic target for multiple myeloma (MM). Membrane-bound BCMA can be cleaved by γ-secretase and shed as soluble BCMA (sBCMA). sBCMA can act as a neutralizing sink to compete with drug, as well as serve as a diagnostic/prognostic biomarker for MM. Antibody-capture based methods, such as enzyme-linked immunosorbent assay (ELISA) and immunoaffinity-liquid chromatography-multiple reaction monitoring (IA-LC-MRM), have been reported and well adopted to measure sBCMA in clinical samples. However, both methods are biased by capturing antibodies. METHODS: We have used various LC-MS workflows to characterize and quantify endogenous sBCMA in MM patient samples, including bottom-up peptide mapping, intact analysis, IA-based, and reagent-free (RF)-LC-MRM quantitation. RESULTS: We have confirmed that sBCMA contains a variable N-terminus and a C-terminus that extends to the transmembrane domain, ending at amino acid 61. Leveraging an in-house synthesized G-1-61 sBCMA recombinant standard, we developed a RF-LC-MRM method for unbiased sBCMA quantitation in MM patient samples. By comparing the results from RF-LC-MRM with ELISA and IA-LC-MRM, we demonstrated that RF-LC-MRM measures a more complete pool of endogenous sBCMA compared to the antibody-based methods. CONCLUSIONS: This work fills the knowledge gap of the exact sequence of endogenous sBCMA for the first time, which differs from the current commercially available standard. Additionally, this work highlights the necessity of identifying the actual sequence of an endogenous soluble target such as sBCMA, both for bioanalytical purposes and to underpin pharmacodynamic measurements.


Asunto(s)
Antígeno de Maduración de Linfocitos B , Mieloma Múltiple , Humanos , Cromatografía Liquida , Cromatografía Líquida con Espectrometría de Masas , Mieloma Múltiple/diagnóstico , Espectrometría de Masas en Tándem , Anticuerpos
3.
J Biol Chem ; 298(4): 101653, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35101445

RESUMEN

PROteolysis TArgeting Chimeras (PROTACs) are hetero-bifunctional small molecules that can simultaneously recruit target proteins and E3 ligases to form a ternary complex, promoting target protein ubiquitination and degradation via the Ubiquitin-Proteasome System (UPS). PROTACs have gained increasing attention in recent years due to certain advantages over traditional therapeutic modalities and enabling targeting of previously "undruggable" proteins. To better understand the mechanism of PROTAC-induced Target Protein Degradation (TPD), several computational approaches have recently been developed to study and predict ternary complex formation. However, mounting evidence suggests that ubiquitination can also be a rate-limiting step in PROTAC-induced TPD. Here, we propose a structure-based computational approach to predict target protein ubiquitination induced by cereblon (CRBN)-based PROTACs by leveraging available structural information of the CRL4A ligase complex (CRBN/DDB1/CUL4A/Rbx1/NEDD8/E2/Ub). We generated ternary complex ensembles with Rosetta, modeled multiple CRL4A ligase complex conformations, and predicted ubiquitination efficiency by separating the ternary ensemble into productive and unproductive complexes based on the proximity of the ubiquitin to accessible lysines on the target protein. We validated our CRL4A ligase complex models with published ternary complex structures and additionally employed our modeling workflow to predict ubiquitination efficiencies and sites of a series of cyclin-dependent kinases (CDKs) after treatment with TL12-186, a pan-kinase PROTAC. Our predictions are consistent with CDK ubiquitination and site-directed mutagenesis of specific CDK lysine residues as measured using a NanoBRET ubiquitination assay in HEK293 cells. This work structurally links PROTAC-induced ternary formation and ubiquitination, representing an important step toward prediction of target "degradability."


Asunto(s)
Modelos Moleculares , Ubiquitina-Proteína Ligasas , Ubiquitinación , Células HEK293 , Humanos , Estructura Terciaria de Proteína , Proteolisis , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo
4.
Plant Cell Environ ; 46(3): 975-990, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36515184

RESUMEN

Improving osmotic stress tolerance is critical to help crops to thrive and maintain high yields in adverse environments. Here, we characterized a core subunit of the transport protein particle (TRAPP) complex, ZmBET5L1, in maize using knowledge-driven data mining and genome editing. We found that ZmBET5L1 can interact with TRAPP I complex subunits and act as a tethering factor to mediate vesicle aggregation and targeting from the endoplasmic reticulum to the Golgi apparatus. ZmBET5L1 knock-out increased the primary root elongation rate under 20% polyethylene glycol-simulated osmotic stress and the survival rate under drought stress compared to wild-type seedlings. In addition, we found that ZmBET5L1 moderates PIN1 polar localization and auxin flow to maintain normal root growth. ZmBET5L1 knock-out optimized auxin flow to the lateral side of the root and promoted its growth to generate a robust root, which may be related to improved osmotic stress tolerance. Together, these findings demonstrate that ZmBET5L1 inhibits primary root growth and decreases osmotic stress tolerance by regulating vesicle transport and auxin distribution. This study has improved our understanding of the role of tethering factors in response to abiotic stresses and identified desirable variants for breeding osmotic stress tolerance in maize.


Asunto(s)
Plantones , Zea mays , Zea mays/fisiología , Presión Osmótica , Plantones/genética , Plantones/metabolismo , Estrés Fisiológico , Sequías , Ácidos Indolacéticos/metabolismo , Regulación de la Expresión Génica de las Plantas
5.
BMC Genomics ; 23(1): 593, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35971070

RESUMEN

BACKGROUND: Maize kernel row number (KRN) is one of the most important yield traits and has changed greatly during maize domestication and selection. Elucidating the genetic basis of KRN will be helpful to improve grain yield in maize. RESULTS: Here, we measured KRN in four environments using a nested association mapping (NAM) population named HNAU-NAM1 with 1,617 recombinant inbred lines (RILs) that were derived from 12 maize inbred lines with a common parent, GEMS41. Then, five consensus quantitative trait loci (QTLs) distributing on four chromosomes were identified in at least three environments along with the best linear unbiased prediction (BLUP) values by the joint linkage mapping (JLM) method. These QTLs were further validated by the separate linkage mapping (SLM) and genome-wide association study (GWAS) methods. Three KRN genes cloned through the QTL assay were found in three of the five consensus QTLs, including qKRN1.1, qKRN2.1 and qKRN4.1. Two new QTLs of KRN, qKRN4.2 and qKRN9.1, were also identified. On the basis of public RNA-seq and genome annotation data, five genes highly expressed in ear tissue were considered candidate genes contributing to KRN. CONCLUSIONS: This study carried out a comprehensive analysis of the genetic architecture of KRN by using a new NAM population under multiple environments. The present results provide solid information for understanding the genetic components underlying KRN and candidate genes in qKRN4.2 and qKRN9.1. Single-nucleotide polymorphisms (SNPs) closely linked to qKRN4.2 and qKRN9.1 could be used to improve inbred yield during molecular breeding in maize.


Asunto(s)
Sitios de Carácter Cuantitativo , Zea mays , Mapeo Cromosómico/métodos , Grano Comestible/genética , Estudio de Asociación del Genoma Completo , Fenotipo , Zea mays/genética
6.
Drug Metab Dispos ; 50(5): 600-612, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35153196

RESUMEN

Sotorasib is a first-in-class, targeted covalent inhibitor of Kirsten rat sarcoma viral oncogene homolog (KRAS)G12C approved by the FDA to treat patients with locally advanced or metastatic non-small cell lung cancer with the KRASG12C mutation. The mass balance, excretion, and metabolism of [14C]-sotorasib was characterized in rats and dogs after a single dose of 60 or 500 mg/kg, respectively. Mean recovery was >90% for both species. Excretion of unchanged sotorasib was a minor pathway in rats, accounting for <4% of administered dose in urine and <7% of administered dose in feces. Approximately 66% of administered dose was recovered in the bile from bile duct cannulated rats as metabolites. Excretion of unchanged sotorasib was the major excretion pathway in dogs, likely caused by solubility-limited absorption. Major pathways of sotorasib biotransformation included glutathione conjugation and oxidative metabolism. In vitro experiments demonstrated that nonenzymatic conjugation (Michael addition) was the primary mechanism of the reaction with glutathione. Extended radioactivity profiles in blood and plasma were observed in rats, but not dogs, after dosing with [14C]-sotorasib. In vitro experiments demonstrated that sotorasib-protein adducts were observed with both rat hemoglobin and serum albumin, explaining the extended radioactivity profile. SIGNIFICANCE STATEMENT: This study characterized the mass balance, excretion, and metabolism of [14C]-sotorasib, a covalent Kirsten rat sarcoma viral oncogene homolog G12C inhibitor, in rats and dogs. Rapid absorption and extensive metabolism of sotorasib was observed in rats, while sotorasib was primarily excreted unchanged in dog feces, likely due to solubility-limited absorption. Protein adducts with rat hemoglobin and serum albumin were characterized, explaining observed extended blood and plasma radioactivity profiles. The primary biotransformation pathway, glutathione conjugation, was mediated through nonenzymatic conjugation.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Perros , Heces , Glutatión , Humanos , Piperazinas , Proteínas Proto-Oncogénicas p21(ras) , Piridinas , Pirimidinas , Albúmina Sérica
7.
Proc Natl Acad Sci U S A ; 115(21): E4767-E4776, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29743190

RESUMEN

Reproducible quantification of large biological cohorts is critical for clinical/pharmaceutical proteomics yet remains challenging because most prevalent methods suffer from drastically declined commonly quantified proteins and substantially deteriorated quantitative quality as cohort size expands. MS2-based data-independent acquisition approaches represent tremendous advancements in reproducible protein measurement, but often with limited depth. We developed IonStar, an MS1-based quantitative approach enabling in-depth, high-quality quantification of large cohorts by combining efficient/reproducible experimental procedures with unique data-processing components, such as efficient 3D chromatographic alignment, sensitive and selective direct ion current extraction, and stringent postfeature generation quality control. Compared with several popular label-free methods, IonStar exhibited far lower missing data (0.1%), superior quantitative accuracy/precision [∼5% intragroup coefficient of variation (CV)], the widest protein abundance range, and the highest sensitivity/specificity for identifying protein changes (<5% false altered-protein discovery) in a benchmark sample set (n = 20). We demonstrated the usage of IonStar by a large-scale investigation of traumatic injuries and pharmacological treatments in rat brains (n = 100), quantifying >7,000 unique protein groups (>99.8% without missing data across the 100 samples) with a low false discovery rate (FDR), two or more unique peptides per protein, and high quantitative precision. IonStar represents a reliable and robust solution for precise and reproducible protein measurement in large cohorts.


Asunto(s)
Biomarcadores/análisis , Lesiones Traumáticas del Encéfalo/metabolismo , Encéfalo/metabolismo , Metanfetamina/farmacología , Proteoma/análisis , Proteómica/métodos , Animales , Encéfalo/efectos de los fármacos , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/patología , Estimulantes del Sistema Nervioso Central/farmacología , Masculino , Ratas , Ratas Wistar , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem
8.
Am J Physiol Heart Circ Physiol ; 318(5): H1256-H1271, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32223553

RESUMEN

Despite decades of research on the pathophysiology of myocardial stunning, protein changes and/or phosphorylation status underlying alterations in cardiac function/structure remain inadequately understood. Here, we utilized comprehensive and quantitative proteomic and phosphoproteomic approaches to explore molecular mechanisms of myocardial stunning in swine. The closed-chest swine (n = 5 pigs) were subjected to a 10-min left anterior descending coronary artery (LAD) occlusion producing regional myocardial stunning. Tissues from the ischemic LAD region and a remote nonischemic area of the left ventricle were collected 1 h after reperfusion. Ion current-based proteomics (IonStar) and quantitative phosphoproteomics were employed in parallel to identify alterations in protein level and site-specific phosphorylation changes. A novel swine heart protein database exhibiting high accuracy and low redundancy was developed here to facilitate comprehensive study. Further informatic investigations identified potential protein-protein interactions in stunned myocardium. In total, we quantified 2,099 protein groups and 4,699 phosphorylation sites with only 0.4% missing values. Proteomic analyses revealed downregulation of contractile function and extracellular matrix remodeling. Meanwhile, alterations in phosphorylation linked with contractile dysfunction and apoptotic cell death were uncovered. NetworKIN/STRING analysis predicted regulatory kinases responsible for altered phosphosites, such as protein kinase C-mediated phosphorylation of cardiac troponin I-S199 and CaMKII-mediated phosphorylation of phospholamban-T17. In summary, the ion current-based proteomics and phosphoproteomics reliably identified novel alterations in protein content and phosphorylation contributing to contractile dysfunction, extracellular matrix (ECM) damage, and programmed cell death in stunned myocardium, which corroborate well with our physiological observations. Moreover, this work developed a comprehensive database of the swine heart proteome, a highly valuable resource for future translational research in porcine models with cardiovascular diseases.NEW & NOTEWORTHY We first used ion current-based proteomics and phosphoproteomics to reliably identify novel alterations in protein expression and phosphorylation contributing to contractile dysfunction, extracellular matrix (ECM) damage, and programmed cell death in stunned myocardium and developed a comprehensive swine heart-specific proteome database, which provides a valuable resource for future research in porcine models of cardiovascular diseases.


Asunto(s)
Enfermedad Coronaria/metabolismo , Miocardio/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Potenciales de Acción , Animales , Enfermedad Coronaria/genética , Enfermedad Coronaria/fisiopatología , Masculino , Contracción Miocárdica , Fosfoproteínas/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteoma/genética , Porcinos
9.
Mol Cell Proteomics ; 17(4): 655-671, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29358341

RESUMEN

Despite decades of effort, pancreatic adenocarcinoma (PDAC) remains an intractable clinical challenge. An insufficient understanding of mechanisms underlying tumor cell responses to chemotherapy contributes significantly to the lack of effective treatment regimens. Here, paclitaxel, a first-line chemotherapeutic agent, was observed to interact synergistically with birinapant, a second mitochondrial-derived activator of caspases mimetic. Therefore, we investigated molecular-level drug interaction mechanisms using comprehensive, reproducible, and well-controlled ion-current-based MS1 quantification (IonStar). By analyzing 40 biological samples in a single batch, we compared temporal proteomic responses of PDAC cells treated with birinapant and paclitaxel, alone and combined. Using stringent criteria (e.g. strict false-discovery-rate (FDR) control, two peptides/protein), we quantified 4069 unique proteins confidently (99.8% without any missing data), and 541 proteins were significantly altered in the three treatment groups, with an FDR of <1%. Interestingly, most of these proteins were altered only by combined birinapant/paclitaxel, and these predominantly represented three biological processes: mitochondrial function, cell growth and apoptosis, and cell cycle arrest. Proteins responsible for activation of oxidative phosphorylation, fatty acid ß-oxidation, and inactivation of aerobic glycolysis were altered largely by combined birinapant/paclitaxel compared with single drugs, suggesting the Warburg effect, which is critical for survival and proliferation of cancer cells, was alleviated by the combination treatment. Metabolic profiling was performed to confirm substantially greater suppression of the Warburg effect by the combined agents compared with either drug alone. Immunoassays confirmed proteomic data revealing changes in apoptosis/survival signaling pathways, such as inhibition of PI3K/AKT, JAK/STAT, and MAPK/ERK signal transduction, as well as induction of G2/M arrest, and showed the drug combination induced much more apoptosis than did single agents. Overall, this in-depth, large-scale proteomics study provided novel insights into molecular mechanisms underlying synergy of combined birinapant/paclitaxel and describes a proteomics/informatics pipeline that can be applied broadly to the development of cancer drug combination regimens.


Asunto(s)
Adenocarcinoma/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Dipéptidos/farmacología , Indoles/farmacología , Paclitaxel/farmacología , Neoplasias Pancreáticas/metabolismo , Línea Celular Tumoral , Humanos , Proteómica
10.
Theor Appl Genet ; 132(12): 3439-3448, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31612262

RESUMEN

KEY MESSAGE: A quantitative trait locus for kernel row number, qKRN5, was dissected into two tightly linked loci, qKRN5a and qKRN5b. Fine mapping, comparative analysis of nucleotide sequences and gene expression established the endonuclease/exonuclease/phosphatase family protein-encoding gene Zm00001d013603 as a causal gene of qKRN5b. Maize grain yield is determined by agronomically important traits that are controlled by interactions among and between genes and environmental factors. Considerable efforts have been made to identify major quantitative trait loci (QTLs) for yield-related traits; however, few were previously isolated and characterized in maize. In this study, we divided a QTL for kernel row number (KRN), qKRN5, into two tightly linked loci, qKRN5a and qKRN5b, using advanced backcross populations derived from near-isogenic lines. KRN was greater in individuals that were homozygous for the NX531 allele, which showed coupling-phase linkage. The major QTL qKRN5b had an additive effect of approximately one kernel row. Furthermore, fine mapping narrowed qKRN5b within a 147.2-kb region. The upstream sequence Zm00001d013603 and its expression in the ear inflorescence showed obvious differences between qKRN5b near-isogenic lines. In situ hybridization located Zm00001d013603 on the primordia of the spikelet pair meristems and spikelet meristems, but not in the inflorescence meristem, which indicates a role in regulating the initiation of reproductive axillary meristems of ear inflorescences. Expression analysis and nucleotide sequence alignment revealed that Zm00001d013603, which encodes an endonuclease/exonuclease/phosphatase family protein that hydrolyzes phosphatidyl inositol diphosphates, is the causal gene of qKRN5b. These results provide insight into the genetic basis of KRN and have potential value for enhancing maize grain yield.


Asunto(s)
Sitios de Carácter Cuantitativo , Semillas/crecimiento & desarrollo , Zea mays/genética , Alelos , Mapeo Cromosómico , Ligamiento Genético , Fenotipo , Semillas/genética
11.
Biochem Biophys Res Commun ; 503(4): 2784-2791, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30100061

RESUMEN

TIMELESS protein is known to be essential for normal circadian rhythms. Aging is a deleterious process which affects all the physiological functions of complex organisms including the circadian rhythms. The circadian aging may produce disorganization among the circadian rhythms, arrhythmicity and even, disconnection from the environment, resulting in a detrimental situation to the organism. However, the role of circadian genes on the aging process is poorly understood. In present study, we found TIMELESS was down-regulated in cellular senescence, and further research indicated E2F1 bound to the promotor of TIMELESS and regulated its expression in cellular senescence. Knockdown of TIMELESS accelerated cellular senescence induced by ectopic expression of RasV12, and overexpression of TIMELESS delayed this kind onset of senescence. Meanwhile, micrococcal nuclease assays proved depletion of TIMELESS exacerbated genomic instability at the onset of senescence. Together, our data reveal that TIMELESS plays a role in OIS, which is associated with genome stability changing.


Asunto(s)
Proteínas de Ciclo Celular/genética , Senescencia Celular/genética , Ritmo Circadiano/genética , Factor de Transcripción E2F1/genética , Fibroblastos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Senescencia Celular/efectos de los fármacos , Factor de Transcripción E2F1/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Regulación de la Expresión Génica , Genes Reporteros , Inestabilidad Genómica , Células HEK293 , Humanos , Peróxido de Hidrógeno/farmacología , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
12.
Mass Spectrom Rev ; 36(6): 734-754, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-27097288

RESUMEN

In the last decade, the advancement of liquid chromatography mass spectrometry (LC/MS) techniques has enabled their broad application in protein characterization, both quantitatively and qualitatively. Owing to certain important merits of LC/MS techniques (e.g., high selectivity, flexibility, and rapid method development), LC/MS assays are often deemed as preferable alternatives to conventional methods (e.g., ligand-binding assays) for the analysis of protein biotherapeutics. At the discovery and development stages, LC/MS is generally employed for two purposes absolute quantification of protein biotherapeutics in biological samples and qualitative characterization of proteins. For absolute quantification of a target protein in bio-matrices, recent work has led to improvements in the efficiency of LC/MS method development, sample treatment, enrichment and digestion, and high-performance low-flow-LC separation. These advances have enhanced analytical sensitivity, specificity, and robustness. As to qualitative analysis, a range of techniques have been developed to characterize intramolecular disulfide bonds, glycosylation, charge variants, primary sequence heterogeneity, and the drug-to-antibody ratio of antibody drug conjugate (ADC), which has enabled a refined ability to assess product quality. In this review, we will focus on the discussion of technical challenges and strategies of LC/MS-based quantification and characterization of biotherapeutics, with the emphasis on the analysis of antibody-based biotherapeutics such as monoclonal antibodies (mAbs) and ADCs. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:734-754, 2017.


Asunto(s)
Anticuerpos Monoclonales/análisis , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Proteínas/análisis , Animales , Anticuerpos Monoclonales/uso terapéutico , Productos Biológicos/análisis , Disulfuros/análisis , Disulfuros/química , Descubrimiento de Drogas/métodos , Glicosilación , Humanos , Inmunoconjugados/análisis , Mapeo Peptídico/métodos , Proteínas/metabolismo , Proteínas/farmacocinética , Proteínas Recombinantes/análisis , Sensibilidad y Especificidad , Distribución Tisular
13.
Mol Cell Biochem ; 446(1-2): 137-148, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29388151

RESUMEN

P16 is the product of cyclin-dependent kinase 2 (CDKN2A) gene and plays multi-pronged roles in the cancer progression. Breast cancer (BC) is the most commonly diagnosed cancer type among females. In the current study, the potential function of P16 in the growth and metastasis of BC was investigated. Firstly, the expression statuses of P16 in different cancer types were investigated using Oncomine database and validated with corresponding cancer cell lines. Afterwards, the expression of P16 was knocked down in BC cell line BT-549 and the effect on the cell proliferation, sensitivity to paclitaxel (TAX), apoptosis, migration, and invasion abilities was assessed using CCK-8, Edu, flow cytometry, scratch, and transwell assays, respectively. The influence of P16 inhibition and P16 overexpression on the activity of IL-6/JAK/STAT3 signaling was explored. Additionally, the effect of P16 inhibition on the tumor growth was verified with a BC xenograft mice model. The abnormal expression of P16 was detected in BC cell line BT-549 as well as colorectal cancer and osteosarcoma cell lines. The inhibition of P16 suppressed the cell proliferation, invasion, and migration abilities while induced the apoptosis and sensitivity to TAX in BT-549 cells. At molecular level, P16 knockdown inhibited the expression of IL6ST and Survivin, and the phosphorylation of JAK2 and STAT3. However, the induced expression of P16 in P16-knockdown BT-549 cells restored the activity of IL-6/JAK2/STAT3 pathway. The results of in vitro assays were confirmed with BC xenograft models: the inhibition of P16 decreased the tumor growth rate. Findings outlined in the current study demonstrated that the inhibition of P16 decreased the growth and metastasis potential of BC cells by inhibiting IL-6/JAK2/STAT3 signaling.


Asunto(s)
Neoplasias de la Mama/metabolismo , Movimiento Celular , Proliferación Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Interleucina-6/metabolismo , Janus Quinasa 2/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Femenino , Xenoinjertos , Humanos , Interleucina-6/genética , Janus Quinasa 2/genética , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Trasplante de Neoplasias , Factor de Transcripción STAT3/genética
14.
PLoS Genet ; 11(11): e1005670, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26575831

RESUMEN

Kernel row number (KRN) is an important component of yield during the domestication and improvement of maize and controlled by quantitative trait loci (QTL). Here, we fine-mapped a major KRN QTL, KRN4, which can enhance grain productivity by increasing KRN per ear. We found that a ~3-Kb intergenic region about 60 Kb downstream from the SBP-box gene Unbranched3 (UB3) was responsible for quantitative variation in KRN by regulating the level of UB3 expression. Within the 3-Kb region, the 1.2-Kb Presence-Absence variant was found to be strongly associated with quantitative variation in KRN in diverse maize inbred lines, and our results suggest that this 1.2-Kb transposon-containing insertion is likely responsible for increased KRN. A previously identified A/G SNP (S35, also known as Ser220Asn) in UB3 was also found to be significantly associated with KRN in our association-mapping panel. Although no visible genetic effect of S35 alone could be detected in our linkage mapping population, it was found to genetically interact with the 1.2-Kb PAV to modulate KRN. The KRN4 was under strong selection during maize domestication and the favorable allele for the 1.2-Kb PAV and S35 has been significantly enriched in modern maize improvement process. The favorable haplotype (Hap1) of 1.2-Kb-PAV-S35 was selected during temperate maize improvement, but is still rare in tropical and subtropical maize germplasm. The dissection of the KRN4 locus improves our understanding of the genetic basis of quantitative variation in complex traits in maize.


Asunto(s)
Proteínas de Plantas/genética , Zea mays/genética , Clonación Molecular , Perfilación de la Expresión Génica , Genes de Plantas , Zea mays/crecimiento & desarrollo
15.
J Proteome Res ; 16(7): 2445-2456, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28412812

RESUMEN

In-depth and reproducible protein measurement in many biological samples is often critical for pharmaceutical/biomedical proteomics but remains challenging. MS1-based quantification using quadrupole/ultrahigh-field Orbitrap (Q/UHF-Orbitrap) holds great promise, but the critically important experimental approaches enabling reliable large-cohort analysis have long been overlooked. Here we described an IonStar experimental strategy achieving excellent quantitative quality of MS1 quantification. Key features include: (i) an optimized, surfactant-aided sample preparation approach provides highly efficient (>75% recovery) and reproducible (<15% CV) peptide recovery across large cell/tissue cohorts; (ii) a long column with modest gradient length (2.5 h) yields the optimal balance of depth/throughput on a Q/UHF-Orbitrap; (iii) a large-ID trap not only enables highly reproducible gradient delivery as for the first time observed via real-time conductivity monitoring, but also increases quantitative loading capacity by >8-fold and quantified >25% more proteins; (iv) an optimized HCD-OT markedly outperforms HCD-IT when analyzing large cohorts with high loading amounts; (v) selective removal of hydrophobic/hydrophilic matrix components using a novel selective trapping/delivery approach enables reproducible, robust LC-MS analysis of >100 biological samples in a single set, eliminating batch effect; (vi) MS1 acquired at higher resolution (fwhm = 120 k) provides enhanced S/N and quantitative accuracy/precision for low-abundance species. We examined this pipeline by analyzing a 5 group, 20 samples biological benchmark sample set, and quantified 6273 unique proteins (≥2 peptides/protein) under stringent cutoffs without fractionation, 6234 (>99.4%) without missing data in any of the 20 samples. The strategy achieved high quantitative accuracy (3-6% media error), low intragroup variation (6-9% media intragroup CV) and low false-positive biomarker discovery rates (3-8%) across the five groups, with quantified protein abundances spanning >6.5 orders of magnitude. Finally, this strategy is straightforward, robust, and broadly applicable in pharmaceutical/biomedical investigations.


Asunto(s)
Fraccionamiento Químico/métodos , Péptidos/análisis , Proteoma/aislamiento & purificación , Proteómica/métodos , Línea Celular Tumoral , Fraccionamiento Químico/instrumentación , Cromatografía Liquida , Mezclas Complejas/química , Humanos , Conductos Pancreáticos/química , Conductos Pancreáticos/patología , Proteómica/instrumentación , Reproducibilidad de los Resultados , Tamaño de la Muestra , Tensoactivos/química , Espectrometría de Masas en Tándem
16.
New Phytol ; 214(2): 721-733, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28040882

RESUMEN

UNBRANCHED3 (UB3), a member of the SQUAMOSA promoter binding protein-like (SPL) gene family, regulates kernel row number by negatively modulating the size of the inflorescence meristem in maize. However, the regulatory pathway by which UB3 mediates branching remains unknown. We introduced the UB3 into rice and maize to reveal its effects in the two crop plants, respectively. Furthermore, we performed transcriptome sequencing and protein-DNA binding assay to elucidate the regulatory pathway of UB3. We found that UB3 could bind and regulate the promoters of LONELY GUY1 (LOG1) and Type-A response regulators (ARRs), which participate in cytokinin biosynthesis and signaling. Overexpression of exogenous UB3 in rice (Oryza sativa) dramatically suppressed tillering and panicle branching as a result of a greater decrease in the amount of active cytokinin. By contrast, moderate expression of UB3 suppressed tillering slightly, but promoted panicle branching by cooperating with SPL genes, resulting in a higher grain number per panicle in rice. In maize (Zea mays) ub3 mutant with an increased kernel row number, UB3 showed a low expression but cytokinin biosynthesis-related genes were up-regulated and degradation-related genes were down-regulated. These results suggest that UB3 regulates vegetative and reproductive branching by modulating cytokinin biosynthesis and signaling in maize and rice.


Asunto(s)
Citocininas/biosíntesis , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal , Zea mays/metabolismo , Vías Biosintéticas/genética , Regulación de la Expresión Génica de las Plantas , Inflorescencia/anatomía & histología , Mutación/genética , Oryza/anatomía & histología , Oryza/genética , Plantas Modificadas Genéticamente , Regeneración , Transcriptoma/genética
17.
J Proteome Res ; 15(2): 540-53, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26650791

RESUMEN

Investigation of influenza-A-virus (IAV)-infected lung proteomes will greatly promote our understanding on the virus-host crosstalk. Using a detergent-cocktail extraction and digestion procedure and a reproducible ion-current-based method, we performed the first comprehensive temporal analysis of mouse IAV infection. Mouse lung tissues at three time points post-inoculation were compared with controls (n = 4/group), and >1600 proteins were quantified without missing value in any animal. Significantly changed proteins were identified at 4 days (n = 144), 7 days (n = 695), and 10 days (n = 396) after infection, with low false altered protein rates (1.73-8.39%). Functional annotation revealed several key biological processes involved in the systemic host responses. Intriguingly, decreased levels of several cell junction proteins as well as increased levels of tissue metalloproteinase MMP9 were observed, reflecting the IAV-induced structural breakdown of lung epithelial barrier. Supporting evidence of MMP9 activation came from immunoassays examining the abundance and phosphorylation states of all MAPKs and several relevant molecules. Importantly, IAV-induced MMP gelatinase expression was suggested to be specific to MMP9, and p38 MAPK may contribute predominantly to MMP9 elevation. These findings help to resolve the long-lasting debate regarding the signaling pathways of IAV-induced MMP9 expression and shed light on the molecular mechanisms underlying pulmonary capillary-alveolar leak syndrome that can occur during influenza infection.


Asunto(s)
Barrera Alveolocapilar/metabolismo , Pulmón/metabolismo , Infecciones por Orthomyxoviridae/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Animales , Barrera Alveolocapilar/virología , Western Blotting , Cromatografía de Fase Inversa , Subtipo H3N2 del Virus de la Influenza A/fisiología , Modelos Lineales , Pulmón/irrigación sanguínea , Pulmón/virología , Masculino , Espectrometría de Masas , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/virología
18.
BMC Plant Biol ; 16: 35, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26833353

RESUMEN

BACKGROUND: Vitreoscilla hemoglobin (VHb) is a type of hemoglobin found in the Gram-negative aerobic bacterium Vitreoscilla that has been shown to contribute to the tolerance of anaerobic stress in multiple plant species. Maize (Zea mays L.) is susceptible to waterlogging, causing significant yield loss. In this study, we approached this problem with the introduction of an exogenous VHb gene. RESULTS: We overexpressed the VHb gene in Arabidopsis and maize under the control of the CaMV35S promoter. After 14 days of waterlogging treatment, the transgenic VHb Arabidopsis plants remained green, while the controls died. Under waterlogging, important plant growth traits of VHb plants, including seedling height, primary root length, lateral root number, and shoot dry weight were significantly improved relative to those of the controls. The VHb gene was also introduced into a maize line through particle bombardment and was then transferred to two elite maize inbred lines through marker-assisted backcrossing. The introduction of VHb significantly enhanced plant growth under waterlogging stress on traits, including seedling height, primary root length, lateral root number, root dry weight, and shoot dry weight, in both Zheng58 and CML50 maize backgrounds. Under the waterlogging condition, transgenic VHb maize seedlings exhibited elevated expression of alcohol dehydrogenase (ADH1) and higher peroxidase (POD) enzyme activity. The two VHb-containing lines, Zheng58 (VHb) and CML50 (VHb), exhibited higher tolerance to waterlogging than their negative control lines (Zheng58 and CML50). CONCLUSIONS: These results demonstrate that the exogenous VHb gene confers waterlogging tolerance to the transgenic maize line. In Maize in the place of to the transgenic maize line, the VHb gene is a useful molecular tool for the improvement of waterlogging and submergence-tolerance.


Asunto(s)
Arabidopsis/genética , Proteínas Bacterianas/genética , Hemoglobinas Truncadas/genética , Vitreoscilla/genética , Zea mays/genética , Adaptación Fisiológica/genética , Umbral Anaerobio , Arabidopsis/fisiología , Genes Bacterianos , Plantas Modificadas Genéticamente , Agua , Zea mays/fisiología
19.
J Proteome Res ; 14(10): 4147-57, 2015 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-26051676

RESUMEN

Comprehensive and accurate evaluation of data quality and false-positive biomarker discovery is critical to direct the method development/optimization for quantitative proteomics, which nonetheless remains challenging largely due to the high complexity and unique features of proteomic data. Here we describe an experimental null (EN) method to address this need. Because the method experimentally measures the null distribution (either technical or biological replicates) using the same proteomic samples, the same procedures and the same batch as the case-vs-contol experiment, it correctly reflects the collective effects of technical variability (e.g., variation/bias in sample preparation, LC-MS analysis, and data processing) and project-specific features (e.g., characteristics of the proteome and biological variation) on the performances of quantitative analysis. To show a proof of concept, we employed the EN method to assess the quantitative accuracy and precision and the ability to quantify subtle ratio changes between groups using different experimental and data-processing approaches and in various cellular and tissue proteomes. It was found that choices of quantitative features, sample size, experimental design, data-processing strategies, and quality of chromatographic separation can profoundly affect quantitative precision and accuracy of label-free quantification. The EN method was also demonstrated as a practical tool to determine the optimal experimental parameters and rational ratio cutoff for reliable protein quantification in specific proteomic experiments, for example, to identify the necessary number of technical/biological replicates per group that affords sufficient power for discovery. Furthermore, we assessed the ability of EN method to estimate levels of false-positives in the discovery of altered proteins, using two concocted sample sets mimicking proteomic profiling using technical and biological replicates, respectively, where the true-positives/negatives are known and span a wide concentration range. It was observed that the EN method correctly reflects the null distribution in a proteomic system and accurately measures false altered proteins discovery rate (FADR). In summary, the EN method provides a straightforward, practical, and accurate alternative to statistics-based approaches for the development and evaluation of proteomic experiments and can be universally adapted to various types of quantitative techniques.


Asunto(s)
Artefactos , Proteoma/análisis , Proteómica/métodos , Animales , Biomarcadores/análisis , Encéfalo/metabolismo , Química Encefálica , Cromatografía Liquida , Escherichia coli/química , Escherichia coli/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Leucocitos Mononucleares/química , Leucocitos Mononucleares/metabolismo , Hígado/química , Hígado/metabolismo , Proteoma/genética , Proteoma/metabolismo , Ratas , Estándares de Referencia , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem
20.
J Proteome Res ; 14(11): 4662-73, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26390080

RESUMEN

The two key steps for analyzing proteomic data generated by high-resolution MS are database searching and postprocessing. While the two steps are interrelated, studies on their combinatory effects and the optimization of these procedures have not been adequately conducted. Here, we investigated the performance of three popular search engines (SEQUEST, Mascot, and MS Amanda) in conjunction with five filtering approaches, including respective score-based filtering, a group-based approach, local false discovery rate (LFDR), PeptideProphet, and Percolator. A total of eight data sets from various proteomes (e.g., E. coli, yeast, and human) produced by various instruments with high-accuracy survey scan (MS1) and high- or low-accuracy fragment ion scan (MS2) (LTQ-Orbitrap, Orbitrap-Velos, Orbitrap-Elite, Q-Exactive, Orbitrap-Fusion, and Q-TOF) were analyzed. It was found combinations involving Percolator achieved markedly more peptide and protein identifications at the same FDR level than the other 12 combinations for all data sets. Among these, combinations of SEQUEST-Percolator and MS Amanda-Percolator provided slightly better performances for data sets with low-accuracy MS2 (ion trap or IT) and high accuracy MS2 (Orbitrap or TOF), respectively, than did other methods. For approaches without Percolator, SEQUEST-group performs the best for data sets with MS2 produced by collision-induced dissociation (CID) and IT analysis; Mascot-LFDR gives more identifications for data sets generated by higher-energy collisional dissociation (HCD) and analyzed in Orbitrap (HCD-OT) and in Orbitrap Fusion (HCD-IT); MS Amanda-Group excels for the Q-TOF data set and the Orbitrap Velos HCD-OT data set. Therefore, if Percolator was not used, a specific combination should be applied for each type of data set. Moreover, a higher percentage of multiple-peptide proteins and lower variation of protein spectral counts were observed when analyzing technical replicates using Percolator-associated combinations; therefore, Percolator enhanced the reliability for both identification and quantification. The analyses were performed using the specific programs embedded in Proteome Discoverer, Scaffold, and an in-house algorithm (BuildSummary). These results provide valuable guidelines for the optimal interpretation of proteomic results and the development of fit-for-purpose protocols under different situations.


Asunto(s)
Algoritmos , Péptidos/análisis , Proteoma/análisis , Proteómica/métodos , Motor de Búsqueda/métodos , Programas Informáticos , Línea Celular Tumoral , Bases de Datos de Proteínas , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Proteoma/genética , Proteoma/metabolismo , Proteómica/instrumentación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA