Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Obstet Gynecol ; 143(5): e136-e139, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38513235

RESUMEN

BACKGROUND: Postpartum necrotizing myositis is a rare condition, typically presenting as a complication after uterine artery embolization or uterine compression suturing. Uterine ischemia can cause endometrial necrosis and even myometrial necrosis, which can lead to systemic infection. If a systemic infection is not promptly and actively treated, it may pose significant risk. CASE: A 35-year-old patient who had undergone bilateral uterine artery ligation, modified B-Lynch suture, and multiple compression sutures due to refractory postpartum hemorrhage frequently presented to clinic after postpartum discharge due to persistent fever and vaginal discharge. A bag-like prolapse from the vagina measuring 10×5 cm, accompanied by purulent discharge, was noted 78 days postsurgery. Subsequent pelvic magnetic resonance imaging revealed a uterine basal abscess and postpartum necrotizing myositis; an emergency laparoscopic supracervical hysterectomy was performed, with postoperative pathology confirming the diagnosis. After the patient's discharge, she was readmitted for inpatient treatment of a pelvic abscess. CONCLUSIONS: Although rare, postpartum necrotizing myositis should be considered in postpartum patients presenting with fever, abdominal pain, severe infection symptoms, and abnormal vaginal discharge. Culture and sensitivity testing are recommended to direct appropriate antibiotic therapy.


Asunto(s)
Miositis , Hemorragia Posparto , Excreción Vaginal , Embarazo , Femenino , Humanos , Adulto , Absceso , Hemorragia Posparto/terapia , Periodo Posparto , Prolapso , Necrosis/complicaciones , Miositis/diagnóstico , Miositis/terapia , Miositis/complicaciones
2.
Ying Yong Sheng Tai Xue Bao ; 34(4): 1015-1023, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37078321

RESUMEN

Unreasonable exploitation of artificial forest causes severe soil erosion in the mountainous areas of sou-thern China. The spatial-temporal variations of soil erosion in typical small watershed with artificial forest has signifi-cant implications for artificial forest exploitation and sustainable development of mountainous ecological environment. In this study, we used revised universal soil loss equation (RUSLE) and geographic information system (GIS) to evaluate the spatial and temporal variations of soil erosion and its key drivers of Dadingshan watershed in mountainous area of western Guangdong. The results showed that the erosion modulus was 1948.1 t·km-2·a-1 (belonging to light erosion) in the Dadingshan watershed. However, the spatial variation of soil erosion was substantial, with variation coefficient of 5.12. The maximal soil erosion modulus was 191127 t·km-2·a-1. Slight erosion (<500 t·km-2·a-1) accounted for 80.6% of the total watershed area. The moderate erosion and above (>2500 t·km-2·a-1) were mainly distributed in young Eucalyptus forest area with less than 30% of the vegetation coverage, which contributed nearly 75.7% of total soil erosion. During 2014-2019, the interannual variations of mean erosion of Dadingshan catchment was modest, but the spatial variation of soil erosion was large. Vegetation cover, slope, and rainfall were key drivers of such variation. The destruction of natural vegetation resulted by plantation exploitation was the primary cause of soil erosion in afforestation areas. Soil erosion significantly increased with the increases of slope gradient in the young forest area, which was aggravated by extreme rainfall. However, soil erosion gradually decreased with the increases of the age of Eucalypt plantation. Therefore, the hot spot of soil erosion was young forest areas of Eucalypt plantation with slope >25°, and the key period for soil erosion control was the first 2-3 years after Eucalyptus planting. We suggested that reasonable afforestation measures should be used in area with >25° slopes, and that the destruction of natural vegetation should be avoided on hillslope with >35° slope gradient. The road construction standards and forest management should be further improved to address the challenge of extreme rainfalls.


Asunto(s)
Eucalyptus , Suelo , Sistemas de Información Geográfica , Bosques , China , Conservación de los Recursos Naturales/métodos , Monitoreo del Ambiente/métodos
3.
Pharmaceutics ; 14(1)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35057109

RESUMEN

Ag2S nanoparticles are near-infrared (NIR) probes providing emission in a specific spectral range (~1200 nm), and superparamagnetic iron oxide nanoparticles (SPION) are colloidal systems able to respond to an external magnetic field. A disadvantage of Ag2S NPs is the attenuated luminescent properties are reduced in aqueous media and human fluids. Concerning SPION, the main drawback is the generation of undesirable clusters that reduce particle stability. Here, we fabricate biocompatible hybrid nanosystems combining Ag2S NPs and SPION by the electrospraying technique for drug delivery purposes. These nanostructures are composed of poly(lactic-co-glycolic acid) (PLGA) as the polymeric matrix in connection with both Ag2S NPs and SPIONs. Initially, we fabricate a hybrid colloidal nanosystem composed of Ag2S NPs in connection with PLGA (PLGA@Ag2S) by three different routes, showing good photoluminescent (PL) properties with relatively high average decay times. Then, we incorporate SPIONs, obtaining a PLGA polymeric matrix containing both Ag2S NPs and SPION (PLGA@Ag2S@SPION). Interestingly, in this hybrid system, the location of Ag2S NPs and SPIONs depends on the synthesis route performed during electrospraying. After a detailed characterization, we demonstrate the encapsulation and release capabilities, obtaining the kinetic release using a model chemotherapeutic drug (maslinic acid). Finally, we perform in vitro cytotoxicity assays using drug-loaded hybrid systems against several tumor cell lines.

4.
ACS Appl Mater Interfaces ; 14(4): 4871-4881, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35049282

RESUMEN

Ag2S nanoparticles are the staple for high-resolution preclinical imaging and sensing owing to their photochemical stability, low toxicity, and photoluminescence (PL) in the second near-infrared biological window. Unfortunately, Ag2S nanoparticles exhibit a low PL efficiency attributed to their defective surface chemistry, which curbs their translation into the clinics. To address this shortcoming, we present a simple methodology that allows to improve the PL quantum yield from 2 to 10%, which is accompanied by a PL lifetime lengthening from 0.7 to 3.8 µs. Elemental mapping and X-ray photoelectron spectroscopy indicate that the PL enhancement is related to the partial removal of sulfur atoms from the nanoparticle's surface, reducing surface traps responsible for nonradiative de-excitation processes. This interpretation is further backed by theoretical modeling. The acquired knowledge about the nanoparticles' surface chemistry is used to optimize the procedure to transfer the nanoparticles into aqueous media, obtaining water-dispersible Ag2S nanoparticles that maintain excellent PL properties. Finally, we compare the performance of these nanoparticles with other near-infrared luminescent probes in a set of in vitro and in vivo experiments, which demonstrates not only their cytocompatibility but also their superb optical properties when they are used in vivo, affording higher resolution images.


Asunto(s)
Materiales Biocompatibles/química , Nanopartículas/química , Imagen Óptica , Plata/química , Azufre/química , Rayos Infrarrojos , Ensayo de Materiales , Tamaño de la Partícula , Propiedades de Superficie
5.
Adv Mater ; 34(7): e2107764, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34826883

RESUMEN

Temperature of tissues and organs is one of the first parameters affected by physiological and pathological processes, such as metabolic activity, acute trauma, or infection-induced inflammation. Therefore, the onset and development of these processes can be detected by monitoring deviations from basal temperature. To accomplish this, minimally invasive, reliable, and accurate measurement of the absolute temperature of internal organs is required. Luminescence nanothermometry is the ideal technology for meeting these requirements. Although this technique has lately undergone remarkable developments, its reliability is being questioned due to spectral distortions caused by biological tissues. In this work, how the use of bright Ag2 S nanoparticles featuring temperature-dependent fluorescence lifetime enables reliable and accurate measurement of the absolute temperature of the liver in mice subjected to lipopolysaccharide-induced inflammation is demonstrated. Beyond the remarkable thermal sensitivity (≈ 3% °C-1 around 37 °C) and thermal resolution obtained (smaller than 0.3 °C), the results included in this work set a blueprint for the development of new diagnostic procedures based on the use of intracorporeal temperature as a physiological indicator.


Asunto(s)
Hígado , Luminiscencia , Animales , Inflamación/diagnóstico , Ratones , Reproducibilidad de los Resultados , Temperatura
6.
Adv Sci (Weinh) ; 8(9): 2003838, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33977056

RESUMEN

Luminescent nano-thermometry is a fast-developing technique with great potential for in vivo sensing, diagnosis, and therapy. Unfortunately, it presents serious limitations. The luminescence generated by nanothermometers, from which thermal readout is obtained, is strongly distorted by the attenuation induced by tissues. Such distortions lead to low signal levels and entangle absolute and reliable thermal monitoring of internal organs. Overcoming both limitations requires the use of high-brightness luminescent nanothermometers and adopting more complex approaches for temperature estimation. In this work, it is demonstrated how superbright Ag2S nanothermometers can provide in vivo, reliable, and absolute thermal reading of the liver during laser-induced hyperthermia. For that, a new procedure is designed in which thermal readout is obtained from the combination of in vivo transient thermometry measurements and in silico simulations. The synergy between in vivo and in silico measurements has made it possible to assess relevant numbers such as the efficiency of hyperthermia processes, the total heat energy deposited in the liver, and the relative contribution of Ag2S nanoparticles to liver heating. This work provides a new way for absolute thermal sensing of internal organs with potential application not only to hyperthermia processes but also to advanced diagnosis and therapy.


Asunto(s)
Simulación por Computador , Hipertermia Inducida , Hígado/fisiopatología , Nanotecnología/métodos , Termómetros , Termometría/métodos , Animales , Modelos Animales de Enfermedad , Diseño de Equipo , Femenino , Luminiscencia , Ratones , Termometría/instrumentación
7.
Adv Mater ; 33(30): e2100077, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34117667

RESUMEN

Deliberate and local increase of the temperature within solid tumors represents an effective therapeutic approach. Thermal therapies embrace this concept leveraging the capability of some species to convert the absorbed energy into heat. To that end, magnetic hyperthermia (MHT) uses magnetic nanoparticles (MNPs) that can effectively dissipate the energy absorbed under alternating magnetic fields. However, MNPs fail to provide real-time thermal feedback with the risk of unwanted overheating and impeding on-the-fly adjustment of the therapeutic parameters. Localization of MNPs within a tissue in an accurate, rapid, and cost-effective way represents another challenge for increasing the efficacy of MHT. In this work, MNPs are combined with state-of-the-art infrared luminescent nanothermometers (LNTh; Ag2 S nanoparticles) in a nanocapsule that simultaneously overcomes these limitations. The novel optomagnetic nanocapsule acts as multimodal contrast agents for different imaging techniques (magnetic resonance, photoacoustic and near-infrared fluorescence imaging, optical and X-ray computed tomography). Most crucially, these nanocapsules provide accurate (0.2 °C resolution) and real-time subcutaneous thermal feedback during in vivo MHT, also enabling the attainment of thermal maps of the area of interest. These findings are a milestone on the road toward controlled magnetothermal therapies with minimal side effects.


Asunto(s)
Medios de Contraste/química , Nanopartículas Magnéticas de Óxido de Hierro/química , Nanocápsulas/química , Animales , Línea Celular Tumoral , Colorantes Fluorescentes/química , Calor , Humanos , Hipertermia Inducida , Rayos Infrarrojos , Campos Magnéticos , Magnetismo , Ratones , Imagen Óptica , Terapia Fototérmica , Compuestos de Plata/química
8.
ACS Nano ; 14(4): 4122-4133, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32227917

RESUMEN

Luminescence nanothermometry has emerged over the past decade as an exciting field of research due to its potential applications where conventional methods have demonstrated to be ineffective. Preclinical research has been one of the areas that have benefited the most from the innovations proposed in the field. Nevertheless, certain questions concerning the reliability of the technique under in vivo conditions have been continuously overlooked by most of the scientific community. In this proof-of-concept, hyperspectral in vivo imaging is used to explain how unverified assumptions about the thermal dependence of the optical transmittance of biological tissues in the so-called biological windows can lead to erroneous measurements of temperature. Furthermore, the natural steps that should be taken in the future for a reliable in vivo luminescence nanothermometry are discussed together with a perspective view of the field after the findings here reported.


Asunto(s)
Luminiscencia , Reproducibilidad de los Resultados , Temperatura
9.
Eur J Pharm Biopharm ; 154: 228-235, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32707287

RESUMEN

Malignant melanoma accounts for about 1% of all skin malignant tumors and represents the most aggressive and lethal form of skin cancer. Clinically, there exist different therapeutic options for melanoma treatment, such as surgery, chemotherapy, radiotherapy, photodynamic therapy and immunotherapy. However, serious adverse effects usually arise, and survival rates are still low because a high number of patients present relapses within 6-9 months after therapy. AS1411 is a G-quadruplex (G4) aptamer capable of tumor-specific recognition, since it binds to nucleolin, a multi-functional protein expressed in many different types of cancer cells. In this work, we present a novel drug delivery system composed of AS1411 and indocyanine green (ICG) to track its accumulation in tumoral cells in a melanoma mouse model. Using a simple supramolecular strategy, we conjugated the complex AS1411-ICG with C8 ligand, an acridine orange derivative with potential anticancer ligand. Then, we performed in vitro cytotoxicity experiments using the B16 mouse melanoma cell line, and in vivo experiments using a B16 mouse melanoma model to study biodistribution and histological changes. The circular dichroism (CD) data suggest that C8 does not affect the parallel G4 topology of AS1411-ICG, whereas it increases its thermal stability. Incubation of B16 melanoma cells with the AS1411-ICG complex associated with C8 increases the cytotoxicity compared with AS1411-ICG alone. From the in vivo studies, we conclude that both AS1411-ICG and AS1411-ICG-C8 presented the potential to accumulate preferentially in tumor tissues. Moreover, these compounds seem to be efficiently removed from the mice's bodies through kidney clearance. In summary, these results suggest that these complexes derived from AS1411 aptamer could act as a delivery system of ligands with antitumoral activity for in vivo melanoma therapy.


Asunto(s)
Aptámeros de Nucleótidos/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Verde de Indocianina/metabolismo , Melanoma/metabolismo , Oligodesoxirribonucleótidos/metabolismo , Neoplasias Cutáneas/metabolismo , Animales , Aptámeros de Nucleótidos/administración & dosificación , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Verde de Indocianina/administración & dosificación , Melanoma/tratamiento farmacológico , Melanoma Experimental , Ratones , Ratones Endogámicos C57BL , Oligodesoxirribonucleótidos/administración & dosificación , Neoplasias Cutáneas/tratamiento farmacológico
10.
ACS Appl Mater Interfaces ; 12(11): 12500-12509, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32069007

RESUMEN

Ag2S semiconductor nanoparticles (NPs) are near-infrared luminescent probes with outstanding properties (good biocompatibility, optimum spectral operation range, and easy biofunctionalization) that make them ideal probes for in vivo imaging. Ag2S NPs have, indeed, made possible amazing challenges including in vivo brain imaging and advanced diagnosis of the cardiovascular system. Despite the continuous redesign of synthesis routes, the emission quantum yield (QY) of Ag2S NPs is typically below 0.2%. This leads to a low luminescent brightness that avoids their translation into the clinics. In this work, an innovative synthetic methodology that permits a 10-fold increment in the absolute QY from 0.2 up to 2.3% is presented. Such an increment in the QY is accompanied by an enlargement of photoluminescence lifetimes from 184 to 1200 ns. The optimized synthetic route presented here is based on a fine control over both the Ag core and the Ag/S ratio within the NPs. Such control reduces the density of structural defects and decreases the nonradiative pathways. In addition, we demonstrate that the superior performance of the Ag2S NPs allows for high-contrast in vivo bioimaging.


Asunto(s)
Colorantes Fluorescentes/química , Nanopartículas del Metal/química , Puntos Cuánticos/química , Plata/química , Abdomen/diagnóstico por imagen , Animales , Femenino , Colorantes Fluorescentes/administración & dosificación , Miembro Posterior/diagnóstico por imagen , Nanopartículas del Metal/administración & dosificación , Ratones , Ratones Desnudos , Puntos Cuánticos/administración & dosificación , Plata/administración & dosificación , Espectroscopía Infrarroja Corta
11.
Nat Commun ; 11(1): 2933, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32523065

RESUMEN

Optical probes operating in the second near-infrared window (NIR-II, 1,000-1,700 nm), where tissues are highly transparent, have expanded the applicability of fluorescence in the biomedical field. NIR-II fluorescence enables deep-tissue imaging with micrometric resolution in animal models, but is limited by the low brightness of NIR-II probes, which prevents imaging at low excitation intensities and fluorophore concentrations. Here, we present a new generation of probes (Ag2S superdots) derived from chemically synthesized Ag2S dots, on which a protective shell is grown by femtosecond laser irradiation. This shell reduces the structural defects, causing an 80-fold enhancement of the quantum yield. PEGylated Ag2S superdots enable deep-tissue in vivo imaging at low excitation intensities (<10 mW cm-2) and doses (<0.5 mg kg-1), emerging as unrivaled contrast agents for NIR-II preclinical bioimaging. These results establish an approach for developing superbright NIR-II contrast agents based on the synergy between chemical synthesis and ultrafast laser processing.


Asunto(s)
Imagen Óptica/métodos , Fotoquímica/métodos , Colorantes Fluorescentes , Nanopartículas/química , Puntos Cuánticos
12.
Nanoscale ; 11(43): 21009, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31651016

RESUMEN

Correction for 'Perspectives for Ag2S NIR-II nanoparticles in biomedicine: from imaging to multifunctionality' by Yingli Shen, et al., Nanoscale, 2019, DOI: 10.1039/c9nr05733a.

13.
Nanoscale ; 11(41): 19251-19264, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31560003

RESUMEN

Research on near-infrared (NIR) bioimaging has progressed very quickly in the past few years, as fluorescence imaging is reaching a credible implementation as a preclinical technique. The applications of NIR bioimaging in theranostics have contributed to its increasing impact. This has brought about the development of novel technologies and, simultaneously, of new contrast agents capable of acting as efficient NIR optical probes. Among these probes, Ag2S nanoparticles (NPs) have attracted increasing attention due to their temperature-sensitive NIR-II emission, which can be exploited for deep-tissue imaging and thermometry, and their heat delivery capabilities. This multifunctionality makes Ag2S NPs ideal candidates for theranostics. This review presents a critical analysis of the synthesis routes, properties and optical features of Ag2S NPs. We also discuss the latest and most remarkable achievements enabled by these NPs in preclinical imaging and theranostics, together with a critical assessment of their potential to face forthcoming challenges in biomedicine.


Asunto(s)
Nanomedicina , Nanopartículas/química , Compuestos de Plata/química , Animales , Técnicas Biosensibles/métodos , Humanos , Neoplasias/diagnóstico por imagen , Espectroscopía Infrarroja Corta
14.
Biomaterials ; 184: 31-40, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30195803

RESUMEN

The limitation of light penetration depth invalidates the application of photodynamic therapy in deep-seated tumors. X-ray excited photodynamic therapy (X-PDT), which is based on X-rays excited luminescent nanoparticles (XLNP), provides a new strategy for PDT in deep tissues. However, the high X-ray dosage used and non-specific cytotoxicity of the nanoparticle-photosensitizer nanocomposite (NPs-PS) hamper in-vivo X-PDT applications. To address these problems, a simple and efficient NPs-PS nanocomposite using ß-NaGdF4: Tb3+ nanoparticles and widely used PS called Rose Bengal (RB) was designed. With perfectly matched spectrum of NPs emission and RB absorption upon X-ray excitation and covalent conjugation of a large amount of RB on NP surfaces to minimize the energy transfer distance, the system demonstrated ultra-high FRET efficiency up to 99.739%, which leads to maximum production of singlet oxygen for PDT with significantly increased anti-tumor efficacy. By 2-aminoethylphosphonic acid surface modification of NPs, excellent biocompatibility was achieved even at a high concentration of 1 mg/mL. The in-vivo X-PDT efficacy was found around 90% of HepG2 tumor growth inhibition with X-ray dose of only 1.5 Gy, which shows the best anti-tumor efficacy at same X-ray dose level reported so far. The present work provides a promising platform for in-vivo X-PDT in deep tumors.


Asunto(s)
Gadolinio/química , Nanocompuestos/química , Fármacos Fotosensibilizantes/química , Rosa Bengala/química , Terbio/química , Animales , Supervivencia Celular , Femenino , Transferencia Resonante de Energía de Fluorescencia , Células Hep G2 , Humanos , Ratones Endogámicos BALB C , Fotoquimioterapia , Oxígeno Singlete/metabolismo , Rayos X
15.
ACS Appl Mater Interfaces ; 9(22): 19176-19183, 2017 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-28517927

RESUMEN

Methylammonium lead halide perovskite has emerged as a new class of low-temperature-processed high-performance semiconductors for optoelectronics, but with photoresponse limited to the UV-visible region and low environmental stability. Herein, we report a flexible planar photodetector based on MAPbI3 microarrays integrated with NaYF4:Yb/Er upconversion nanoparticles (UCns) that offers promise for future high performance and long-term environmental stability. The promise derives from the confluence of several factors, including significantly enhanced photons absorption in the visible spectrum, efficient energy transition in the near-infrared (NIR) region, and inhibition of water attack by the hydrophobic UCns capping layer. The UCns layer aided in remarkably enhanced photodetection capability in the visible spectrum with detectivity (D*) reaching 5.9 × 1012 Jones, among the highest reported values, due to the increased photocarrier lifetime and decreased reflectivity. Excellent NIR photoresponse with spectral responsivity (R) and D* as high as 0.27 A W-1 and 0.76 × 1012 Jones were obtained at 980 nm, respectively, superior to the reported values of state-of-the-art organic-perovskite NIR photodetectors. Moreover, the hydrophobic UCns capping layer serving as a moisture inhibitor allowed significantly enhanced long-term environmental stability, e.g., 70% vs 27% performance retained after 1000 h exposure in 30-40% RH humidity air without encapsulation for the bilayer and the neat MAPbI3 devices, respectively. These results suggest that the composite based on perovskite and UCns is promising for constructing high-performance broadband optoelectronic devices with long-term stability.

16.
ACS Appl Mater Interfaces ; 9(46): 39985-39993, 2017 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-29063752

RESUMEN

As a novel molecular and functional imaging modality, X-ray luminescence computed tomography (XLCT) has shown its potentials in biomedical and preclinic applications. However, there are still some limitations of X-ray-excited luminescent materials, such as low luminescence efficiency, poor biocompatibility, and cytotoxicity, making in vivo XLCT imaging quite challenging. In this study, for the very first time, we present on using sub-10 nm ß-NaGdF4:X% Eu3+ nanoparticles with poly(acrylic acid) (PAA) surface modification, which demonstrate outstanding luminescence efficiency, uniform size distribution, water dispersity, and biosafety, as the luminescent probes for in vivo XLCT application. The pure hexagonal phase (ß-) NaGdF4 has been successfully synthesized and characterized by X-ray powder diffraction (XRD) and transmission electron microscopy (TEM), and then the results of X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectrometry  (EDX), and elemental mapping further confirm Eu3+ ions doped into NaGdF4 host. Under X-ray excitation, the ß-NaGdF4 nanoparticles with a doping level of 15% Eu3+ exhibited the most efficient luminescence intensity. Notably, the doping level of Eu3+ has no effect on the crystal phase and morphology of the NaGdF4-based host. Afterward, ß-NaGdF4:15% Eu3+ nanoparticles were modified with PAA to enhance the water dispersity and biocompatibility. The compatibility of in vivo XLCT imaging using such nanoparticles was systematically studied via in vitro cytotoxicity, physical phantom, and in vivo imaging experiments. The ultralow cytotoxicity of PAA-modified nanoparticles, which is confirmed by over 80% cell viability of SH-SY5Y cells when treated by high nanoparticle concentration of 200 µg/mL, overcome the major obstacle for in vivo application. In addition, the high luminescence intensity of PAA-modified nanoparticles enables the location error of in vivo XLCT imaging less than 2 mm, which is comparable to that using commercially available bulk material Y2O3:15% Eu3+. The proposed nanoparticles promote XLCT research into an in vivo stage. Further modification of these nanoparticles with biofunctional molecules could enable the potential of targeting XLCT imaging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA