Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(18): 186502, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38759205

RESUMEN

Polarons-fermionic charge carriers bearing a strong companion lattice deformation-exhibit a natural tendency for self-localization due to the recursive interaction between electrons and the lattice. While polarons are ubiquitous in insulators, how they evolve in transitions to metallic and superconducting states in quantum materials remains an open question. Here, we use resonant inelastic x-ray scattering to track the electron-lattice coupling in the colossal magneto-resistive bi-layer manganite La_{1.2}Sr_{1.8}Mn_{2}O_{7} across its metal-to-insulator transition. The response in the insulating high-temperature state features harmonic emissions of a dispersionless oxygen phonon at small energy transfer. Upon cooling into the metallic state, we observe a drastic redistribution of spectral weight from the region of these harmonic emissions to a broad high energy continuum. In concert with theoretical calculations, we show that this evolution implies a shift in electron-lattice coupling from static to dynamic lattice distortions that leads to a distinct polaronic ground state in the low temperature metallic phase-a dynamic polaron liquid.

2.
Nature ; 563(7731): 374-378, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30429543

RESUMEN

High-temperature copper oxide superconductors consist of stacked CuO2 planes, with electronic band structures and magnetic excitations that are primarily two-dimensional1,2, but with superconducting coherence that is three-dimensional. This dichotomy highlights the importance of out-of-plane charge dynamics, which has been found to be incoherent in the normal state3,4 within the limited range of momenta accessible by optics. Here we use resonant inelastic X-ray scattering to explore the charge dynamics across all three dimensions of the Brillouin zone. Polarization analysis of recently discovered collective excitations (modes) in electron-doped copper oxides5-7 reveals their charge origin, that is, without mixing with magnetic components5-7. The excitations disperse along both the in-plane and out-of-plane directions, revealing its three-dimensional nature. The periodicity of the out-of-plane dispersion corresponds to the distance between neighbouring CuO2 planes rather than to the crystallographic c-axis lattice constant, suggesting that the interplane Coulomb interaction is responsible for the coherent out-of-plane charge dynamics. The observed properties are hallmarks of the long-sought 'acoustic plasmon', which is a branch of distinct charge collective modes predicted for layered systems8-12 and argued to play a substantial part in mediating high-temperature superconductivity10-12.

3.
Nat Mater ; 19(9): 1036, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32661388

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Nat Mater ; 19(4): 381-385, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31959951

RESUMEN

The search continues for nickel oxide-based materials with electronic properties similar to cuprate high-temperature superconductors1-10. The recent discovery of superconductivity in the doped infinite-layer nickelate NdNiO2 (refs. 11,12) has strengthened these efforts. Here, we use X-ray spectroscopy and density functional theory to show that the electronic structure of LaNiO2 and NdNiO2, while similar to the cuprates, includes significant distinctions. Unlike cuprates, the rare-earth spacer layer in the infinite-layer nickelate supports a weakly interacting three-dimensional 5d metallic state, which hybridizes with a quasi-two-dimensional, strongly correlated state with [Formula: see text] symmetry in the NiO2 layers. Thus, the infinite-layer nickelate can be regarded as a sibling of the rare-earth intermetallics13-15, which are well known for heavy fermion behaviour, where the NiO2 correlated layers play an analogous role to the 4f states in rare-earth heavy fermion compounds. This Kondo- or Anderson-lattice-like 'oxide-intermetallic' replaces the Mott insulator as the reference state from which superconductivity emerges upon doping.

5.
Nature ; 515(7526): 245-8, 2014 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-25391962

RESUMEN

Films of iron selenide (FeSe) one unit cell thick grown on strontium titanate (SrTiO3 or STO) substrates have recently shown superconducting energy gaps opening at temperatures close to the boiling point of liquid nitrogen (77 kelvin), which is a record for the iron-based superconductors. The gap opening temperature usually sets the superconducting transition temperature Tc, as the gap signals the formation of Cooper pairs, the bound electron states responsible for superconductivity. To understand why Cooper pairs form at such high temperatures, we examine the role of the SrTiO3 substrate. Here we report high-resolution angle-resolved photoemission spectroscopy results that reveal an unexpected characteristic of the single-unit-cell FeSe/SrTiO3 system: shake-off bands suggesting the presence of bosonic modes, most probably oxygen optical phonons in SrTiO3 (refs 5, 6, 7), which couple to the FeSe electrons with only a small momentum transfer. Such interfacial coupling assists superconductivity in most channels, including those mediated by spin fluctuations. Our calculations suggest that this coupling is responsible for raising the superconducting gap opening temperature in single-unit-cell FeSe/SrTiO3.

6.
Zhonghua Yu Fang Yi Xue Za Zhi ; 54(2): 175-180, 2020 Feb 06.
Artículo en Zh | MEDLINE | ID: mdl-32074706

RESUMEN

Objective: To analyze the molecular characteristics of Listeria monocytogenes strains from ready-to eat food in China. Methods: A total of 239 Listeria monocytogenes strains isolated from ready-to-eat food in 2017, all strains underwent whole-genome sequencing (WGS) , and comparisons uncovered population structure derived from lineages, clonal complex, serogroups, antimicrobial susceptibility and virulence, which were inferred in silico from the WGS data. Core genome multilocus sequence typing was used to subtype isolates. Results: All strains were categorized into three different lineages, lineage Ⅱ was the predominant types in food, and IIa was the main serogroups. CC8, CC101 and CC87 were the first three prevalent CCs among 23 detected CCs, accounting for 49.4%. Only 4.6% (11 isolates) of tested strains harbored antibiotic resistance genes, which were mostly trimethoprim genes (7 isolates, 2.9%). All strains were positive for LIPI-1, and only a part of strains harbored LIPI-3 and LIPI-4, accounting for 13.8% (33 isolates) and 14.2% (34 isolates), respectively. ST619 carried both LIPI-3 and LIPI-4. 51.5% (123 isolates) of strains carried SSI-1, and all CC121 strains harbored SSI-2. Different lineages, serogroups and CCs can be separated obviously through cgMLST analysis, and 24 sublineages were highly concordant with CCs. Conclusion: Ⅱa was the main serogroups in ready-to-eat food isolates in China; CC8, CC101 and CC87 were the prevalent CCs, and CC87 isolates was hypervirulent isolates, cgMLST method can be adopted for prospective foodborne disease surveillance and outbreaks detection.


Asunto(s)
Microbiología de Alimentos , Listeria monocytogenes/aislamiento & purificación , Listeriosis/microbiología , China/epidemiología , Humanos , Listeriosis/epidemiología
7.
Phys Rev Lett ; 122(17): 176403, 2019 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-31107058

RESUMEN

Cuprate superconductors host a multitude of low-energy optical phonons. Using time- and angle-resolved photoemission spectroscopy, we study coherent phonons in Bi_{2}Sr_{2}Ca_{0.92}Y_{0.08}Cu_{2}O_{8+δ}. Sub-meV modulations of the electronic band structure are observed at frequencies of 3.94±0.01 and 5.59±0.06 THz. For the dominant mode at 3.94 THz, the amplitude of the band energy oscillation weakly increases as a function of momentum away from the node. Theoretical calculations allow identifying the observed modes as CuO_{2}-derived A_{1g} phonons. The Bi- and Sr-derived A_{1g} modes which dominate Raman spectra in the relevant frequency range are absent in our measurements. This highlights the mode selectivity for phonons coupled to the near-Fermi-level electrons, which originate from CuO_{2} planes and dictate thermodynamic properties.

8.
Phys Rev Lett ; 122(16): 167401, 2019 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-31075004

RESUMEN

We study the microscopic origins of photocurrent generation in the topological insulator Bi_{2}Se_{3} via time- and angle-resolved photoemission spectroscopy. We image the unoccupied band structure as it evolves following a circularly polarized optical excitation and observe an asymmetric electron population in momentum space, which is the spectroscopic signature of a photocurrent. By analyzing the rise times of the population we identify which occupied and unoccupied electronic states are coupled by the optical excitation. We conclude that photocurrents can only be excited via resonant optical transitions coupling to spin-orbital textured states. Our work provides a microscopic understanding of how to control photocurrents in systems with spin-orbit coupling and broken inversion symmetry.

9.
Phys Rev Lett ; 123(21): 216402, 2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31809181

RESUMEN

The pseudogap, d-wave superconductivity and electron-boson coupling are three intertwined key ingredients in the phase diagram of the cuprates. Sr_{2}IrO_{4} is a 5d-electron counterpart of the cuprates in which both the pseudogap and a d-wave instability have been observed. Here, we report spectroscopic evidence for the presence of the third key player in electron-doped Sr_{2}IrO_{4}: electron-boson coupling. A kink in nodal dispersion is observed with an energy scale of ∼50 meV. The strength of the kink changes with doping, but the energy scale remains the same. These results provide the first noncuprate platform for exploring the relationship between the pseudogap, d-wave instability, and electron-boson coupling in doped Mott insulators.

10.
Phys Rev Lett ; 123(6): 066402, 2019 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-31491189

RESUMEN

The momentum dependence of the nematic order parameter is an important ingredient in the microscopic description of iron-based high-temperature superconductors. While recent reports on FeSe indicate that the nematic order parameter changes sign between electron and hole bands, detailed knowledge is still missing for other compounds. Combining angle-resolved photoemission spectroscopy with uniaxial strain tuning, we measure the nematic band splitting in both FeSe and BaFe_{2}As_{2} without interference from either twinning or magnetic order. We find that the nematic order parameter exhibits the same momentum dependence in both compounds with a sign change between the Brillouin center and the corner. This suggests that the same microscopic mechanism drives the nematic order in spite of the very different phase diagrams.

11.
Proc Natl Acad Sci U S A ; 113(51): 14645-14650, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27930313

RESUMEN

The existence of charge-density-wave (CDW) correlations in cuprate superconductors has now been established. However, the nature of the CDW ground state has remained uncertain because disorder and the presence of superconductivity typically limit the CDW correlation lengths to only a dozen unit cells or less. Here we explore the field-induced 3D CDW correlations in extremely pure detwinned crystals of YBa2Cu3O2 (YBCO) ortho-II and ortho-VIII at magnetic fields in excess of the resistive upper critical field ([Formula: see text]) where superconductivity is heavily suppressed. We observe that the 3D CDW is unidirectional and possesses a long in-plane correlation length as well as significant correlations between neighboring CuO2 planes. It is significant that we observe only a single sharply defined transition at a critical field proportional to [Formula: see text], given that the field range used in this investigation overlaps with other high-field experiments including quantum oscillation measurements. The correlation volume is at least two to three orders of magnitude larger than that of the zero-field CDW. This is by far the largest CDW correlation volume observed in any cuprate crystal and so is presumably representative of the high-field ground state of an "ideal" disorder-free cuprate.

12.
Phys Rev Lett ; 121(12): 127001, 2018 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-30296157

RESUMEN

We report an angle-resolved photoemission spectroscopy study of the iron-based superconductor family, Ba_{1-x}Na_{x}Fe_{2}As_{2}. This system harbors the recently discovered double-Q magnetic order appearing in a reentrant C_{4} phase deep within the underdoped regime of the phase diagram that is otherwise dominated by the coupled nematic phase and collinear antiferromagnetic order. From a detailed temperature-dependence study, we identify the electronic response to the nematic phase in an orbital-dependent band shift that strictly follows the rotational symmetry of the lattice and disappears when the system restores C_{4} symmetry in the low temperature phase. In addition, we report the observation of a distinct electronic reconstruction that cannot be explained by the known electronic orders in the system.

13.
Phys Rev Lett ; 118(6): 067002, 2017 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-28234508

RESUMEN

To elucidate the mechanisms behind the enhanced T_{c} in monolayer (1 ML) FeSe on SrTiO_{3} (STO), we grew highly strained 1 ML FeSe on the rectangular (100) face of rutile TiO_{2}, and observed the coexistence of replica bands and superconductivity with a T_{c} of 63 K. From the similar T_{c} between this system and 1ML FeSe on STO (001), we conclude that strain and dielectric constant are likely unimportant to the enhanced T_{c} in these systems. A systematic comparison of 1 ML FeSe on TiO_{2} with other systems in the FeSe family shows that while charge transfer alone can enhance T_{c}, it is only with the addition of interfacial electron-phonon coupling that T_{c} can be increased to the level seen in 1 ML FeSe on STO.

14.
Phys Rev Lett ; 117(11): 117001, 2016 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-27661715

RESUMEN

Superconductivity originates from pairing of electrons near the Fermi energy. The Fermi surface topology and pairing symmetry are thus two pivotal characteristics of a superconductor. Superconductivity in one monolayer (1 ML) FeSe thin film has attracted great interest recently due to its intriguing interfacial properties and possibly high superconducting transition temperature over 65 K. Here, we report high-resolution measurements of the Fermi surface and superconducting gaps in 1 ML FeSe using angle-resolved photoemission spectroscopy. Two ellipselike electron pockets are clearly resolved overlapping with each other at the Brillouin zone corner. The superconducting gap is nodeless but moderately anisotropic, which puts strong constraint on determining the pairing symmetry. The gap maxima locate on the d_{xy} bands along the major axis of the ellipse and four gap minima are observed at the intersections of electron pockets. The gap maximum location combined with the Fermi surface geometry deviate from a single d-wave, extended s-wave or s_{±} gap function, suggesting an important role of the multiorbital nature of Fermi surface and orbital-dependent pairing in 1 ML FeSe. The gap minima location may be explained by a sign change on the electron pockets, or a competition between intra- and interorbital pairing.

15.
Phys Rev Lett ; 117(26): 267201, 2016 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-28059532

RESUMEN

An extreme magnetoresistance (XMR) has recently been observed in several nonmagnetic semimetals. Increasing experimental and theoretical evidence indicates that the XMR can be driven by either topological protection or electron-hole compensation. Here, by investigating the electronic structure of a XMR material, YSb, we present spectroscopic evidence for a special case which lacks topological protection and perfect electron-hole compensation. Further investigations reveal that a cooperative action of a substantial difference between electron and hole mobility and a moderate carrier compensation might contribute to the XMR in YSb.

16.
Rep Prog Phys ; 78(1): 016501, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25551840

RESUMEN

Diamondoids are small hydrocarbon molecules which have the same rigid cage structure as bulk diamond. They can be considered the smallest nanoparticles of diamond. They exhibit a mixture of properties inherited from bulk cubic diamond as well as a number of unique properties related to their size and structure. Diamondoids with different sizes and shapes can be separated and purified, enabling detailed studies of the effects of size and structure on the diamondoids' properties and also allowing the creation of chemically functionalized diamondoids which can be used to create new materials. Most notable among these new materials are self-assembled monolayers of diamondoid-thiols, which exhibit a number of unique electron emission properties.

17.
Nat Mater ; 13(7): 677-81, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24859642

RESUMEN

Three-dimensional (3D) topological Dirac semimetals (TDSs) are a recently proposed state of quantum matter that have attracted increasing attention in physics and materials science. A 3D TDS is not only a bulk analogue of graphene; it also exhibits non-trivial topology in its electronic structure that shares similarities with topological insulators. Moreover, a TDS can potentially be driven into other exotic phases (such as Weyl semimetals, axion insulators and topological superconductors), making it a unique parent compound for the study of these states and the phase transitions between them. Here, by performing angle-resolved photoemission spectroscopy, we directly observe a pair of 3D Dirac fermions in Cd3As2, proving that it is a model 3D TDS. Compared with other 3D TDSs, for example, ß-cristobalite BiO2 (ref. 3) and Na3Bi (refs 4, 5), Cd3As2 is stable and has much higher Fermi velocities. Furthermore, by in situ doping we have been able to tune its Fermi energy, making it a flexible platform for exploring exotic physical phenomena.

18.
Osteoporos Int ; 26(1): 395-405, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25224292

RESUMEN

UNLABELLED: Fibroblast growth factor 23(FGF23) is a bone-derived hormone which regulates mineral homeostasis but may also have a role in cardiovascular disease. Here, we found that higher plasma FGF23 was independently associated with decreased heart rate variability in stage 5 CKD patients and parathyroidectomy may reverse these abnormal indicators. INTRODUCTION: Lower heart rate variability (HRV) in patients with chronic kidney disease (CKD) compared with healthy controls is associated with increased risk of cardiovascular disease (CVD). Higher levels of plasma FGF23 also predict higher risk of CVD. Here, we aimed to evaluate the relationship between plasma FGF23 levels and HRV in patients with stage 5 CKD and to investigate longitudinal changes of them together with the correlation between their changes in two severe secondary hyperparathyroidism (SHPT) subgroups with successful parathyroidectomy (PTX) and persistent SHPT. METHODS: This cross-sectional study included 100 stage 5 CKD patients, 78 controls, and a prospective study in two PTX subgroups classified as successful PTX (n = 24) and persistent SHPT (n = 4) follow-up. Blood examination and 24-h Holter monitoring for HRV were measured. RESULTS: Most HRV indices were lower in stage 5 CKD patients than in healthy controls, and plasma FGF23 levels were higher. In multivariate stepwise regression models, levels of plasma FGF23 and serum parathyroid hormone (PTH) were correlated with HRV. The successful PTX subgroup had significant improvements over baseline in HRV indices. Persistent SHPT subgroup had numerically similar changes in HRV indices. However, plasma FGF23 levels decreased in both subgroups. CONCLUSIONS: Plasma FGF23 levels were higher in CKD patients than in controls, much higher in patients with severe SHPT. FGF23 was independently associated with decreased HRV in stage 5 CKD. Successful PTX may reverse these abnormal indicators and contribute to decreases in the risk of cardiovascular disease.


Asunto(s)
Factores de Crecimiento de Fibroblastos/sangre , Frecuencia Cardíaca/fisiología , Insuficiencia Renal Crónica/sangre , Adulto , Enfermedades Cardiovasculares/etiología , Estudios de Casos y Controles , Estudios Transversales , Electrocardiografía Ambulatoria/métodos , Femenino , Factor-23 de Crecimiento de Fibroblastos , Estudios de Seguimiento , Humanos , Hiperparatiroidismo Secundario/sangre , Hiperparatiroidismo Secundario/etiología , Hiperparatiroidismo Secundario/cirugía , Masculino , Persona de Mediana Edad , Paratiroidectomía , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/fisiopatología
19.
Phys Rev Lett ; 114(24): 247001, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-26196996

RESUMEN

We study optimally doped Bi-2212 (T(c)=96 K) using femtosecond time- and angle-resolved photoelectron spectroscopy. Energy-resolved population lifetimes are extracted and compared with single-particle lifetimes measured by equilibrium photoemission. The population lifetimes deviate from the single-particle lifetimes in the low excitation limit by 1-2 orders of magnitude. Fundamental considerations of electron scattering unveil that these two lifetimes are in general distinct, yet for systems with only electron-phonon scattering they should converge in the low-temperature, low-fluence limit. The qualitative disparity in our data, even in this limit, suggests that scattering channels beyond electron-phonon interactions play a significant role in the electron dynamics of cuprate superconductors.

20.
Phys Rev Lett ; 115(25): 256403, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26722933

RESUMEN

We present a systematic angle-resolved photoemission spectroscopy study of the substitution dependence of the electronic structure of Rb_{0.8}Fe_{2}(Se_{1-z}S_{z})_{2} (z=0, 0.5, 1), where superconductivity is continuously suppressed into a metallic phase. Going from the nonsuperconducting Rb_{0.8}Fe_{2}S_{2} to superconducting Rb_{0.8}Fe_{2}Se_{2}, we observe little change of the Fermi surface topology, but a reduction of the overall bandwidth by a factor of 2. Hence, for these heavily electron-doped iron chalcogenides, we have identified electron correlation as explicitly manifested in the quasiparticle bandwidth to be the important tuning parameter for superconductivity, and that moderate correlation is essential to achieving high T_{C}.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA