Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Neurobiol ; 61(9): 6613-6627, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38329679

RESUMEN

Recent studies have confirmed that pain memory is often accompanied by negative emotions. Electroacupuncture (EA) can block the retrieval of painful memories, thereby alleviating the associated negative behaviors. However, the underlying mechanism is poorly understood. This study revealed that the effect of EA on pain memory-induced negative behaviors is related to the mediation of GABAergic neuron activity and GABA receptor expression in the rostral anterior cingulate cortex (rACC). Previous studies have shown that the rACC is a crucial area for regulating nociceptive behaviors and negative emotions in pain memory models. The GABAergic neurons and receptors in the rACC are largely involved in pain sensation and related effects. However, the relationships among pain memory, GABAergic neurons and receptors in the rACC have not been investigated. In this study, we established a pain memory model via secondary plantar cross-injection of carrageenan and EA treatment. Using chemogenetic methods and behavioral assessments of pain and negative emotion, we found that early excitation of GABAergic neurons in the rACC blocked the recall of pain memories and reduced anxiety-like behaviors in pain memory model rats. Furthermore, pharmacological methods revealed that excitation of GABAA and GABAB receptors in the rACC blocks hyperpathia associated with pain memory and pain-induced anxiety-like behaviors, while inhibition of GABAA and GABAB receptors reverses these effects. These results suggest that EA may alleviate pain and associated anxiety-like behaviors related to pain memories through the activation of GABAergic neurons and excitation of GABAA and GABAB receptors in the rACC.


Asunto(s)
Ansiedad , Modelos Animales de Enfermedad , Electroacupuntura , Neuronas GABAérgicas , Giro del Cíngulo , Hiperalgesia , Memoria , Dolor , Ratas Sprague-Dawley , Animales , Electroacupuntura/métodos , Giro del Cíngulo/metabolismo , Neuronas GABAérgicas/metabolismo , Ansiedad/terapia , Ansiedad/metabolismo , Masculino , Hiperalgesia/terapia , Hiperalgesia/metabolismo , Memoria/fisiología , Dolor/metabolismo , Receptores de GABA/metabolismo , Conducta Animal , Ratas
2.
eNeuro ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39084906

RESUMEN

Comorbid chronic neuropathic pain and anxiety is a common disease that represents a major clinical challenge. The underlying mechanisms of chronic neuropathic pain and anxiety are not entirely understood, which limits the exploration of effective treatment methods. Glutamatergic neurons in the ventrolateral periaqueductal gray (vlPAG) have been implicated in regulating pain, but the potential roles of the vlPAG in neuropathic pain-induced anxiety have not been investigated. Herein, whole-cell recording and immunofluorescence showed that the excitability of CamkIIα neurons in the vlPAG (vlPAGCamkIIα+ neurons) was decreased in mice with spared nerve injury (SNI), while electroacupuncture (EA) activated these neurons. We also showed that chemogenetic inhibition of vlPAGCamkIIα+ neurons resulted in allodynia and anxiety-like behaviors in naive mice. Furthermore, chemogenetic activation of vlPAGCamkIIα+ neurons reduced anxiety-like behaviors and allodynia in mice with SNI, and EA had a similar effect in alleviating these symptoms. Nevertheless, EA combined with chemogenetic activation failed to further relieve allodynia and anxiety-like behaviors. Artificial inhibition of vlPAGCamkIIα+ neurons abolished the analgesic and anxiolytic effects of EA. Overall, our study reveals a novel mechanism of neuropathic pain-induced anxiety and shows that EA may relieve comorbid chronic neuropathic pain and anxiety by activating vlPAGCamkIIα+ neurons.Significance Statement Neuropathic pain is clinically accompanied by anxiety. Both glutamatergic neurons in the ventrolateral periaqueductal gray (vlPAG) and electroacupuncture (EA) have demonstrated analgesic properties. However, the efficacy of these interventions in addressing neuropathic pain and its concomitant anxiety has yet to be fully elucidated. In a mice model of spared nerve injury (SNI), we observed a decreased excitability of vlPAG CamkIIα neurons. Remarkably, EA treatment significantly enhanced the excitability of these neurons. Further, chemogenetic activation of vlPAGCamkIIα+ neurons not only resulted in analgesia but also mitigated anxiety-like behaviors in SNI mice, mirroring the effects observed with EA treatment. Conversely, inhibition of vlPAGCamkIIα+ neurons activity in naive mice reduced pain thresholds and induced anxiety-like behavior, while also negating the beneficial effects of EA. These findings provide novel insights into the mechanistic interplay between chronic neuropathic pain and anxiety, highlighting the therapeutic potential of targeting vlPAG glutamatergic neurons in these conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA