Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Am J Respir Crit Care Med ; 209(9): 1091-1100, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38285918

RESUMEN

Rationale: Quantitative interstitial abnormalities (QIAs) are early measures of lung injury automatically detected on chest computed tomography scans. QIAs are associated with impaired respiratory health and share features with advanced lung diseases, but their biological underpinnings are not well understood. Objectives: To identify novel protein biomarkers of QIAs using high-throughput plasma proteomic panels within two multicenter cohorts. Methods: We measured the plasma proteomics of 4,383 participants in an older, ever-smoker cohort (COPDGene [Genetic Epidemiology of Chronic Obstructive Pulmonary Disease]) and 2,925 participants in a younger population cohort (CARDIA [Coronary Artery Disease Risk in Young Adults]) using the SomaLogic SomaScan assays. We measured QIAs using a local density histogram method. We assessed the associations between proteomic biomarker concentrations and QIAs using multivariable linear regression models adjusted for age, sex, body mass index, smoking status, and study center (Benjamini-Hochberg false discovery rate-corrected P ⩽ 0.05). Measurements and Main Results: In total, 852 proteins were significantly associated with QIAs in COPDGene and 185 in CARDIA. Of the 144 proteins that overlapped between COPDGene and CARDIA, all but one shared directionalities and magnitudes. These proteins were enriched for 49 Gene Ontology pathways, including biological processes in inflammatory response, cell adhesion, immune response, ERK1/2 regulation, and signaling; cellular components in extracellular regions; and molecular functions including calcium ion and heparin binding. Conclusions: We identified the proteomic biomarkers of QIAs in an older, smoking population with a higher prevalence of pulmonary disease and in a younger, healthier community cohort. These proteomics features may be markers of early precursors of advanced lung diseases.


Asunto(s)
Biomarcadores , Proteómica , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Femenino , Masculino , Biomarcadores/sangre , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/sangre , Adulto , Anciano , Estudios de Cohortes , Tomografía Computarizada por Rayos X , Enfermedades Pulmonares Intersticiales/genética , Adulto Joven
4.
Head Neck ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039710

RESUMEN

BACKGROUND: Tracheal adenoid cystic carcinoma (ACC) is a slow growing yet aggressive malignancy with high rates of local recurrence as well as distant metastasis. Tracheal ACC exhibit a low mutation burden along with high mutational diversity, and generally do not respond well to chemotherapeutics. METHODS: We present a rare case of primary tracheal ACC initially presenting with nonspecific cervicalgia and globus sensation that was ultimately treated with tracheal resection followed by chemoradiation. Immune profiling of intratumoral T-cell receptor (TCR) repertoire was subsequently performed using single cell RNA sequencing (scRNAseq). RESULTS: We describe a rare case of primary tracheal adenoid cystic carcinoma highlighting several management principles as well as providing new insights into intratumor T cell populations. CONCLUSIONS: Primary tracheal ACC is most commonly treated with surgical resection followed by adjuvant therapy. Further characterization of the tumor immune microenvironment is necessary to better understand ACC disease biology and to identify potential therapeutic targets.

5.
bioRxiv ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39026730

RESUMEN

Background: Cardiac allograft vasculopathy (CAV), a diffuse thickening of the intima of the coronary arteries and microvasculature, is the leading cause of late graft failure and mortality after heart transplantation (HT). Diagnosis involves invasive coronary angiography, which carries substantial risk, and minimally-invasive approaches to CAV diagnosis are urgently needed. Using single-cell RNA-sequencing in peripheral blood mononuclear cells (PBMCs), we sought to identify cell-specific gene expression profiles in CAV. Methods: Whole blood was collected from 22 HT recipients with angiographically-confirmed CAV and 18 HT recipients without CAV. PBMCs were isolated and subjected to single-cell RNA-sequencing using a 10X Genomics microfluidic platform. Downstream analyses focused on differential expression of genes, cell compositional changes, and T cell receptor repertoire analyses. Results: Across 40 PBMC samples, we isolated 134,984 cells spanning 8 major clusters and 31 subclusters of cell types. Compositional analyses showed subtle, but significant increases in CD4+ T central memory cells, and CD14+ and CD16+ monocytes in high-grade CAV (CAV-2 and CAV-3) as compared to low-grade or absent CAV. After adjusting for age, gender, and prednisone use, 745 genes were differentially expressed in a cell-specific manner in high-grade CAV. Weighted gene co-expression network analyses showed enrichment for putative pathways involved in inflammation and angiogenesis. There were no significant differences in T cell clonality or diversity with increasing CAV severity. Conclusions: Unbiased whole transcriptomic analyses at single-cell resolution identify unique, cell-specific gene expression patterns in CAV, suggesting the potential utility of peripheral gene expression biomarkers in diagnosing CAV.

6.
Arthritis Rheumatol ; 76(5): 684-695, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38111131

RESUMEN

OBJECTIVE: High-density lipoprotein (HDL) has well-characterized anti-atherogenic cholesterol efflux and antioxidant functions. Another function of HDL uncharacterized in rheumatoid arthritis (RA) is its ability to transport microRNAs (miRNAs) between cells and thus alter cellular function. The study's purpose was to determine if HDL-miRNA cargo is altered and affects inflammation in RA. METHODS: HDL-microRNAs were characterized in 30 RA and 30 control participants by next generation sequencing and quantitative polymerase chain reaction. The most abundant differentially expressed miRNA was evaluated further. The function of miR-1246 was assessed by miRNA mimics, antagomiRs, small interfering RNA knockdown, and luciferase assays. Monocyte-derived macrophages were treated with miR-1246-loaded HDL and unmodified HDL from RA and control participants to measure delivery of miR-1246 and its effect on interleukin-6 (IL-6). RESULTS: The most abundant miRNA on HDL was miR-1246; it was significantly enriched two-fold on HDL from RA versus control participants. HDL-mediated miR-1246 delivery to macrophages significantly increased IL6 expression 43-fold. miR-1246 delivery significantly decreased DUSP3 1.5-fold and DUSP3 small interfering RNA knockdown increased macrophage IL6 expression. Luciferase assay indicated DUSP3 is a direct target of miR-1246. Unmodified HDL from RA delivered 1.6-fold more miR-1246 versus control participant HDL. Unmodified HDL from both RA and control participants attenuated activated macrophage IL6 expression, but this effect was significantly blunted in RA so that IL6 expression was 3.4-fold higher after RA versus control HDL treatment. CONCLUSION: HDL-miR-1246 was increased in RA versus control participants and delivery of miR-1246 to macrophages increased IL-6 expression by targeting DUSP3. The altered HDL-miRNA cargo in RA blunted HDL's anti-inflammatory effect.


Asunto(s)
Artritis Reumatoide , Interleucina-6 , Lipoproteínas HDL , Macrófagos , MicroARNs , Humanos , Artritis Reumatoide/genética , Artritis Reumatoide/metabolismo , MicroARNs/metabolismo , Lipoproteínas HDL/farmacología , Lipoproteínas HDL/metabolismo , Persona de Mediana Edad , Masculino , Femenino , Interleucina-6/metabolismo , Macrófagos/metabolismo , Estudios de Casos y Controles , Inflamación/metabolismo , Adulto , Anciano
7.
Laryngoscope ; 134(7): 3245-3252, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38450771

RESUMEN

OBJECTIVES: Recent immunologic study of the adaptive immune repertoire in the subglottic airway demonstrated high-frequency T cell clones that do not overlap between individuals. However, the anatomic distribution and antigenic target of the T cell repertoire in the proximal airway mucosa remain unresolved. METHODS: Single-cell RNA sequencing of matched scar and unaffected mucosa from idiopathic subglottic stenosis patients (iSGS, n = 32) was performed and compared with airway mucosa from healthy controls (n = 10). T cell receptor (TCR) sequences were interrogated via similarity network analysis to explore antigenic targets using the published algorithm: Grouping of Lymphocyte Interactions by Paratope Hotspots (GLIPH2). RESULTS: The mucosal T cell repertoire in healthy control airways consisted of highly expressed T cell clones conserved across anatomic subsites (trachea, bronchi, bronchioles, and lung). In iSGS, high-frequency clones were equally represented in both scar and adjacent non-scar tissue. Significant differences in repertoire structure between iSGS scar and unaffected mucosa was observed, driven by unique low-frequency clones. GLIPH2 results suggest low-frequency clones share targets between multiple iSGS patients. CONCLUSION: Healthy airway mucosa has a highly conserved T cell repertoire across multiple anatomic subsites. Similarly, iSGS patients have highly expressed T cell clones present in both scar and unaffected mucosa. iSGS airway scar possesses an abundance of less highly expanded clones with predicted antigen targets shared between patients. Interrogation of these shared motifs suggests abundant adaptive immunity to viral targets in iSGS airway scar. These results provide insight into disease pathogenesis and illuminate new treatment strategies in iSGS. LEVEL OF EVIDENCE: NA Laryngoscope, 134:3245-3252, 2024.


Asunto(s)
Inmunidad Adaptativa , Laringoestenosis , Humanos , Inmunidad Adaptativa/inmunología , Masculino , Femenino , Laringoestenosis/inmunología , Persona de Mediana Edad , Linfocitos T/inmunología , Adulto , Estudios de Casos y Controles , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/genética , Mucosa Respiratoria/inmunología , Anciano , Análisis de la Célula Individual
8.
iScience ; 27(6): 110011, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38868181

RESUMEN

Combinatorial signaling by proinflammatory cytokines synergizes to exacerbate toxicity to cells and tissue injury during acute infections. To explore synergism at the gene-regulatory level, we investigated the dynamics of transcription and chromatin signaling in response to dual cytokines by integrating nascent RNA imaging mass spectrometry, RNA sequencing, amplification-independent mRNA quantification, assay for transposase-accessible chromatin using sequencing (ATAC-seq), and transcription factor profiling. Costimulation with interferon-gamma (IFNγ) and tumor necrosis factor alpha (TNFα) synergistically induced a small subset of genes, including the chemokines CXCL9, -10, and -11. Gene induction coincided with increased chromatin accessibility at non-coding regions enriched for p65 and STAT1 binding sites. To discover coactivator dependencies, we conducted a targeted chemogenomic screen of transcriptional inhibitors followed by modeling of inhibitor dose-response curves. These results identified high efficacy of either p300/CREB-binding protein (CBP) or bromodomain and extra-terminal (BET) bromodomain inhibitors to disrupt induction of synergy genes. Combination p300/CBP and BET bromodomain inhibition at half-maximal inhibitory concentrations (subIC50) synergistically abrogated IFNγ/TNFα-induced chemokine gene and protein levels.

9.
bioRxiv ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38559150

RESUMEN

Chronic systemic inflammation contributes to a substantially elevated risk of myocardial infarction in people living with HIV (PLWH). Endothelial cell dysfunction disrupts vascular homeostasis regulation, increasing the risk of vasoconstriction, inflammation, and thrombosis that contribute to cardiovascular disease. Our objective was to study the effects of plasma from PLWH on endothelial cell (EC) function, with the hypothesis that cytokines and chemokines are major drivers of EC activation. We first broadly phenotyped chemokine and cytokine receptor expression on arterial ECs, capillary ECs, venous ECs, and vascular smooth muscle cells (VSMCs) in adipose tissue in the subcutaneous adipose tissue of 59 PLWH using single cell transcriptomic analysis. We used CellChat to predict cell-cell interactions between ECs and other cells in the adipose tissue and Spearman correlation to measure the association between ECs and plasma cytokines. Finally, we cultured human arterial ECs (HAECs) in plasma-conditioned media from PLWH and performed bulk sequencing to study the direct effects ex-vivo. We observed that arterial and capillary ECs expressed higher interferon and tumor necrosis factor (TNF) receptors. Venous ECs had more interleukin (IL)-1R1 and ACKR1 receptors, and VSMCs had high significant IL-6R expression. CellChat predicted ligand-receptor interactions between adipose tissue immune cells as senders and capillary ECs as recipients in TNF-TNFRSF1A/B interactions. Chemokines expressed largely by capillary ECs were predicted to bind ACKR1 receptors on venous ECs. Beyond the adipose tissue, the proportion of venous ECs and VSMCs were positively plasma IL-6. In ex-vivo experiments, HAECs cultured with plasma-conditioned media from PLWH expressed transcripts that enriched for the TNF-α and reactive oxidative phosphorylation pathways. In conclusion, ECs demonstrate heterogeneity in cytokine and chemokine receptor expression. Further research is needed to fully elucidate the role of cytokines and chemokines in EC dysfunction and to develop effective therapeutic strategies.

10.
Endocrine ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806891

RESUMEN

BACKGROUND: Anaplastic thyroid carcinoma (ATC) is a highly aggressive malignancy that has consistently shown Wnt/ß-catenin (canonical) signaling activation in various study populations. There are currently no targetable treatments for BRAF-wildtype ATC and a lack of effective treatment for BRAFV600EATC. Our aim is to identify whether Wnt inhibitors could be potential therapeutic agents for ATC patients with limited treatment options. METHODS: In this Institutional Review Board-approved study, we utilize a cohort of 32 ATCs and 20 non-neoplastic multinodular goiters (MNG). We also use 4 ATC spheroid cell lines (THJ-16T, THJ-21T, THJ-29T, and THJ-11T) and two primary patient-derived ATC organoid cultures (VWL-T5 and VWL-T60). Finally, we use a murine xenograft mouse model of ATC for in vivo treatment studies. RESULTS: Using a large patient cohort, we demonstrate that this near-universal Wnt signaling activation is associated with ligand expression- rather than being mutationally-driven. We show that pyrvinium pamoate, a potent Wnt inhibitor, exhibits in vitro efficacy against both ATC cell lines and primary patient-derived ATC organoids VWL-T5 (p < 0.05) and VWL-T60 (p < 0.01) Finally, using a murine xenograft model of ATC, we show that pyrvinium significantly delays the growth of ATC tumors in THJ-16T (p < 0.005) and THJ-21T (p < 0.001). CONCLUSIONS: We tested Wnt inhibitor treatment, both in vitro and in vivo, as a potential novel therapy for this highly lethal disease. Future large-scale studies utilizing multiple Wnt inhibitors will lay the foundation for the development of these novel therapies for patients with ATC.

11.
bioRxiv ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38915603

RESUMEN

BACKGROUND: Salt sensitivity of blood pressure (SSBP) is an independent risk factor for cardiovascular morbidity and mortality, yet the etiology is poorly understood. We previously found that serum/glucocorticoid-regulated kinase 1 (SGK1) and epoxyeicosatrienoic acids (EETs) regulate epithelial sodium channel (ENaC)-dependent sodium entry into monocyte-derived antigen-presenting cells (APCs) and activation of NADPH oxidase, leading to the formation of isolevuglandins (IsoLGs) in SSBP. Whereas aldosterone via the mineralocorticoid receptor (MR) activates SGK1 leading to hypertension, our past findings indicate that levels of plasma aldosterone do not correlate with SSBP, and there is little to no MR expression in APCs. Thus, we hypothesized that cortisol acting via the glucocorticoid receptor (GR), not the MR in APCs mediates SGK1 actions to induce SSBP. METHODS: We performed cellular indexing of transcriptomes and epitopes by sequencing (CITE-Seq) analysis on peripheral blood mononuclear cells of humans rigorously phenotyped for SSBP using an inpatient salt loading/depletion protocol to determine expression of MR, GR, and SGK1 in immune cells. In additional experiments, we performed bulk transcriptomic analysis on isolated human monocytes following in vitro treatment with high salt from a separate cohort. We then measured urine and plasma cortisol, cortisone, renin, and aldosterone. Subsequently, we measured the association of these hormones with changes in systolic, diastolic, mean arterial pressure and pulse pressure as well as immune cell activation via IsoLG formation. RESULTS: We found that myeloid APCs predominantly express the GR and SGK1 with no expression of the MR. Expression of the GR in APCs increased after salt loading and decreased with salt depletion in salt-sensitive but not salt-resistant people and was associated with increased expression of SGK1. Moreover, we found that plasma and urine cortisol/cortisone but not aldosterone/renin correlated with SSBP and APCs activation via IsoLGs. We also found that cortisol negatively correlates with EETs. CONCLUSION: Our findings suggest that renal cortisol signaling via the GR but not the MR in APCs contributes to SSBP via cortisol. Urine and plasma cortisol may provide an important currently unavailable feasible diagnostic tool for SSBP. Moreover, cortisol-GR-SGK1-ENaC signaling pathway may provide treatment options for SSBP.

12.
bioRxiv ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38712281

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) - characterized by excess accumulation of fat in the liver - now affects one third of the world's population. As NAFLD progresses, extracellular matrix components including collagen accumulate in the liver causing tissue fibrosis, a major determinant of disease severity and mortality. To identify transcriptional regulators of fibrosis, we computationally inferred the activity of transcription factors (TFs) relevant to fibrosis by profiling the matched transcriptomes and epigenomes of 108 human liver biopsies from a deeply-characterized cohort of patients spanning the full histopathologic spectrum of NAFLD. CRISPR-based genetic knockout of the top 100 TFs identified ZNF469 as a regulator of collagen expression in primary human hepatic stellate cells (HSCs). Gain- and loss-of-function studies established that ZNF469 regulates collagen genes and genes involved in matrix homeostasis through direct binding to gene bodies and regulatory elements. By integrating multiomic large-scale profiling of human biopsies with extensive experimental validation we demonstrate that ZNF469 is a transcriptional regulator of collagen in HSCs. Overall, these data nominate ZNF469 as a previously unrecognized determinant of NAFLD-associated liver fibrosis.

13.
Obesity (Silver Spring) ; 32(8): 1526-1540, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38967296

RESUMEN

OBJECTIVE: The objective of this study was to identify the transcriptional landscape of insulin resistance (IR) in subcutaneous adipose tissue (SAT) in humans across the spectrum of obesity. METHODS: We used SAT RNA sequencing in 220 individuals with metabolic phenotyping. RESULTS: We identified a 35-gene signature with high predictive accuracy for homeostatic model of IR that was expressed across a variety of non-immune cell populations. We observed primarily "protective" IR associations for adipocyte transcripts and "deleterious" associations for macrophage transcripts, as well as a high concordance between SAT and visceral adipose tissue (VAT). Multiple SAT genes exhibited dynamic expression 5 years after weight loss surgery and with insulin stimulation. Using available expression quantitative trait loci in SAT and/or VAT, we demonstrated similar genetic effect sizes of SAT and VAT on type 2 diabetes and BMI. CONCLUSIONS: SAT is conventionally viewed as a metabolic buffer for lipid deposition during positive energy balance, whereas VAT is viewed as a dominant contributor to and prime mediator of IR and cardiometabolic disease risk. Our results implicate a dynamic transcriptional architecture of IR that resides in both immune and non-immune populations in SAT and is shared with VAT, nuancing the current VAT-centric concept of IR in humans.


Asunto(s)
Resistencia a la Insulina , Grasa Intraabdominal , Obesidad , Grasa Subcutánea , Transcriptoma , Humanos , Grasa Intraabdominal/metabolismo , Masculino , Grasa Subcutánea/metabolismo , Femenino , Persona de Mediana Edad , Adulto , Obesidad/genética , Obesidad/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Índice de Masa Corporal , Adipocitos/metabolismo , Sitios de Carácter Cuantitativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA