Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chem Res Toxicol ; 37(6): 957-967, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38771128

RESUMEN

Lung cancer is the main cause of cancer deaths around the world. Nitrosamine 4-(methyl nitrosamine)-1-(3-pyridyl)-1-butanone (NNK) is a tobacco-specific carcinogen of lung cancer. Abundant evidence implicates long noncoding RNAs (lncRNAs) in tumorigenesis. Yet, the effects and mechanisms of lncRNAs in NNK-induced carcinogenesis are still unclear. In this study, we discovered that NNK-induced transformed Beas-2B cells (Beas-2B-NNK) showed increased cell migration and proliferation while decreasing rates of apoptosis. RNA sequencing and differentially expressed lncRNAs analyses showed that lncRNA PSMB8-AS1 was obviously upregulated. Interestingly, silencing the lncRNA PSMB8-AS1 in Beas-2B-NNK cells reduced cell proliferation and migration and produced cell cycle arrest in the G2/M phase along with a decrease in CDK1 expression. Conclusively, our results demonstrate that lncRNA PSMB8-AS1 could promote the malignant characteristics of Beas-2B-NNK cells by regulating CDK1 and affecting the cell cycle, suggesting that it may supply a new prospective epigenetic mechanism for lung cancer.


Asunto(s)
Bronquios , Carcinógenos , Ciclo Celular , Proliferación Celular , Células Epiteliales , Nicotiana , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Bronquios/citología , Bronquios/patología , Bronquios/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Nicotiana/efectos adversos , Ciclo Celular/efectos de los fármacos , Carcinógenos/toxicidad , Nitrosaminas/toxicidad , Línea Celular , Movimiento Celular/efectos de los fármacos
2.
Biomacromolecules ; 25(1): 248-257, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38110336

RESUMEN

With the flourishing development of 3D printing technology, the demand for printing materials has been increasing rapidly in recent years. In particular, physical gels formed by cellulose nanocrystals (CNCs) exhibit suitable shear-thinning behavior, high storage moduli, and high yield stresses for extrusion-based printing. While most studies use water as the dispersing medium to form CNC percolated gels, the dispersing behavior of CNCs in alternative solvents, such as deep eutectic solvents (DESs), has not been fully explored. Especially, DESs have low volatility and good ionic conductivity to form functional ionogels. Precise control of the rheological properties and selection of suitable dispersion processes continue to pose significant challenges. In light of this, we have devised a novel dispersion process employing thermal and shear treatments to facilitate the gelation of CNCs within DESs. A crude dispersion of CNCs in the DES underwent thermal treatment to partially remove the surface sulfate ester on CNCs. As a result, the repulsive force between CNCs decreases. A second shear then significantly increases the strength of CNC/DES gels potentially because of the increased rod-rod contacts. This approach enables the formation of high-strength gels at low concentrations of CNCs. Both thermal treatment and a second shear are crucial to forming strong percolated CNC gels. In short, we showed a simple strategy to facilitate the dispersion and gelation of CNCs for direct ink writing.


Asunto(s)
Celulosa , Nanopartículas , Celulosa/química , Disolventes Eutécticos Profundos , Temperatura , Geles , Nanopartículas/química
3.
BMC Genomics ; 24(1): 758, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38082253

RESUMEN

BACKGROUND: DNA methylation is a form of epigenetic modification that impacts gene expression without modifying the DNA sequence, thereby exerting control over gene function and cellular development. The prediction of DNA methylation is vital for understanding and exploring gene regulatory mechanisms. Currently, machine learning algorithms are primarily used for model construction. However, several challenges remain to be addressed, including limited prediction accuracy, constrained generalization capability, and insufficient learning capacity. RESULTS: In response to the aforementioned challenges, this paper leverages the similarities between DNA sequences and time series to introduce a time series-based hybrid ensemble learning model, called Multi2-Con-CAPSO-LSTM. The model utilizes multivariate and multidimensional encoding approach, combining three types of time series encodings with three kinds of genetic feature encodings, resulting in a total of nine types of feature encoding matrices. Convolutional Neural Networks are utilized to extract features from DNA sequences, including temporal, positional, physicochemical, and genetic information, thereby creating a comprehensive feature matrix. The Long Short-Term Memory model is then optimized using the Chaotic Accelerated Particle Swarm Optimization algorithm for predicting DNA methylation. CONCLUSIONS: Through cross-validation experiments conducted on 17 species involving three types of DNA methylation (6 mA, 5hmC, and 4mC), the results demonstrate the robust predictive capabilities of the Multi2-Con-CAPSO-LSTM model in DNA methylation prediction across various types and species. Compared with other benchmark models, the Multi2-Con-CAPSO-LSTM model demonstrates significant advantages in sensitivity, specificity, accuracy, and correlation. The model proposed in this paper provides valuable insights and inspiration across various disciplines, including sequence alignment, genetic evolution, time series analysis, and structure-activity relationships.


Asunto(s)
Metilación de ADN , Redes Neurales de la Computación , Factores de Tiempo , Algoritmos , Aprendizaje Automático
4.
Opt Express ; 31(3): 4122-4128, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36785387

RESUMEN

Sidewall tilting is an important parameter to describe the grating morphology and would affect the diffraction efficiency of three-dimensional (3D) display devices based on pixelated nanogratings. However, there is currently a lack of a non-destructive measurement method that can accurately measure the sidewall tilting of the pixelated nanogratings. This is mainly because the kind of nanograting is manufactured in a micron-scale pixel region and the grating lines generally have various directions to ensure that the display device can display images smoothly. In this work, we propose to use a home-made imaging Mueller matrix ellipsometer (IMME) to monitor sidewall tilting of pixelated nanogratings. Simulation and experiments were carried out to characterize the sidewall tilting angle. Through the combination of Mueller matrix elements, we can quickly and qualitatively identify the tilting angle for the purpose of on-line quality monitoring of the device. Through the inverse calculation of the Mueller matrix, we can accurately and quantitatively obtain the value of the tilting, so as to meet the demands of the device design. It is expected the proposed method can provide guidance for the identification and detection of tilting in 3D display elements based on pixelated gratings.

5.
Soft Matter ; 19(37): 7093-7099, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37681740

RESUMEN

The development of stimuli-responsive functional fluorescent hydrogels is of great significance for the realization of artificial intelligence. In the present work, we design and synthesize a stimulus-responsive hydrogel embedded with an aggregation-induced emission (AIE) monomer, in which the fluorescence brightness and intensity can be tuned. The hydrogel embedded with tetraphenylethene-grafted-poly[3-sulfopropyl methacrylate potassium salt] (TPE-PSPMA) as the functional element is prepared by the radical polymerization method. Among them, the TPE core exhibits adaptive fluorescence ability through the AIE effect, while the PSPMA chain provides tunable hydrophilic properties under an external stimulus. The effect of different cationic surfactants with different lengths of hydrophobic tails on the fluorescence properties of TPE-PSPMA in solution is systematically investigated. With cationic surfactants, such as cetyltrimethylammonium bromide (CTAB), the fluorescence intensity is gradually tuned from 1059 to 4623. And the fluorescence intensities increase with the growth of hydrophobic tails of surfactants, which results from hydrophobicity-induced electrostatic interactions among surfactants and polymer chains. Furthermore, an obvious tunable fluorescence feature of hydrogel copolymerized TPE-PSPMA is realized, resulting from the change of brightness and the dynamic increase of fluorescence intensity (from 1031 to 3138) for the hydrogel immersed in CTAB solution with different soaking times. Such a typical fluorescence-regulated behavior can be attributed to the AIE of the TPE-PSPMA chain and the electrostatic interaction between the surfactant and the anionic polymer chain. The designed TPE-PSPMA-based hydrogel is responsive to stimuli, inspiring the development of intelligent systems such as soft robots and smart wearables.

6.
Pestic Biochem Physiol ; 195: 105570, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37666623

RESUMEN

The general cutworm, Spodoptera litura (Lepidoptera: Noctuidae) is a worldwide destructive omnivorous pest and the endoparasitoid wasp Meteorus pulchricornis (Hymenoptera: Braconidae) is the dominant endoparasitoid of S. litura larvae. Trehalase is a key enzyme in insect trehalose metabolism and plays an important role in the growth and development of insects. However, the specific function of trehalase in parasitoid and host associations has been less reported. In this study, we obtained two trehalase genes (SlTre1 and SlTre2) from our previously constructed S. litura transcriptome database; they were highly expressed in 3rd instar larvae. SlTre1 was mainly expressed in the midgut, and SlTre2 was expressed highest in the head. SlTre1 and SlTre2 were highly expressed 5 days after parasitization by M. pulchricornis. Treatment with the trehalase inhibitor validamycin A significantly inhibited the expression levels of SlTre1 and SlTre2, and the trehalase activity. Besides, the content of trehalose was increased but the content of glucose was decreased 24 h after validamycin A treatment in parasitized S. litura larvae. In addition, the immune-related genes in phenoloxidase (PO) pathway and fatty acid synthesis-related genes in lipid metabolism were upregulated in parasitized host larvae after validamycin A treatment. Importantly, the emergence rate, proportion of normal adults, and body size of parasitoid offspring was decreased in parasitized S. litura larvae after validamycin A treatment, indicating that validamycin A disrupts the trehalose metabolism of parasitized host and thus reduces the fitness of parasitoid offspring. The present study provides a novel perspective for coordinating the application of biocontrol and antibiotics in agroecosystem.


Asunto(s)
Trehalasa , Trehalosa , Animales , Trehalasa/genética , Metabolismo de los Hidratos de Carbono , Larva
7.
Pestic Biochem Physiol ; 194: 105503, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532323

RESUMEN

Glyphodes pyloalis Walker (G. pyloalis) is a common destructive mulberry pest. Due to the long-term and frequent use of insecticides, it has developed tolerance to commonly used insecticides. Tolfenpyrad (TFP) is a novel pyrazole heterocyclic insecticide. In order to understand the TFP detoxification mechanism of G. pyloalis larvae, we first estimated the LC30 dose of TFP for 3rd instar G. pyloalis larvae. Next, we identified genes that were differentially expressed in 3rd instar G. pyloalis larvae treated with TFP compared to the control group by transcriptome sequencing. In total, 86,949,569 and 67,442,028 clean reads were obtained from TFP-treated and control G. pyloalis larvae, respectively. A total of 5588 differentially expressed genes (DEGs) were identified in TFP-treated and control G. pyloalis larvae, of which 3084 genes were upregulated and 2504 genes were downregulated. We analyzed the expression of 43 candidate detoxification enzyme genes associated with insecticide tolerance using qPCR. According to the spatiotemporal expression pattern of DEGs, we found that CYP6ABE1, CYP333A36 and GST-epsilon8 were highly expressed in the midgut, while CarEs14 was strongly expressed in haemolymph. Furthermore, we successfully knocked down these genes by RNA interference. After silencing CYP6ABE1 and CYP333A36, bioassay showed that the mortality rate of TFP-treated G. pyloalis larvae was significantly higher compared to the control group. This study provides a theoretical foundation for understanding the sensitivity of G. pyloalis to TFP and establish the basis for the effective and green management of this pest.


Asunto(s)
Insecticidas , Mariposas Nocturnas , Animales , Insecticidas/farmacología , Insecticidas/metabolismo , Mariposas Nocturnas/metabolismo , Larva/genética , Pirazoles/metabolismo
8.
Plant Dis ; 107(8): 2446-2452, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36724097

RESUMEN

Sharp eyespot, a soil-borne disease of wheat (Triticum aestivum L.), is one of the most devastating diseases and severely affects grain production. The most efficient and economical method of controlling the disease is the utilization of genetic resistance. In this study, the wheat-Psathyrostachys huashanica introgression line H83 processed the enhanced resistance to Rhizoctonia cerealis isolate R0301 than its wheat parent 7182. A resistance locus in the 600 to 800 Mb interval of chromosome 2BL was screened using 244 segregation population F2 plants of H83×Huixianhong with bulked segregant analysis and wheat axiom 660K genotyping array. Furthermore, by using 12 kompetitive allele-specific PCR markers, a major resistance gene, designated as Qse.xn-2BL, was identified in a secondary segregating population with 138 F3:4 lines and initially mapped to a 765.6 to 775.5 Mb interval on chromosome 2BL. Molecular cytology analysis revealed that H83 probably has an alien introgression at the distal of chromosome 2BL, where it overlapped with the mapping target gene. Above all, H83 showed great potential to improve wheat resistance to sharp eyespot and can be expected to improve resistance in wheat breeding.


Asunto(s)
Fitomejoramiento , Triticum , Triticum/genética , Resistencia a la Enfermedad/genética , Poaceae/genética , Alelos
9.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37761984

RESUMEN

The high cell density, immobilization and stability of biofilms are ideal characteristics for bacteria in resisting antibiotic therapy. CsgD is a transcription activating factor that regulates the synthesis of curly fimbriae and cellulose in Escherichia coli, thereby enhancing bacterial adhesion and promoting biofilm formation. To investigate the role of CsgD in biofilm formation and stress resistance in bacteria, the csgD deletion mutant ΔcsgD was successfully constructed from the engineered strain E. coli BL21(DE3) using the CRISPR/Cas9 gene-editing system. The results demonstrated that the biofilm of ΔcsgD decreased by 70.07% (p < 0.05). Additionally, the mobility and adhesion of ΔcsgD were inhibited due to the decrease in curly fimbriae and extracellular polymeric substances. Furthermore, ΔcsgD exhibited a significantly decreased resistance to acid, alkali and osmotic stress conditions (p < 0.05). RNA-Seq results revealed 491 differentially expressed genes between the parent strain and ΔcsgD, with enrichment primarily observed in metabolism-related processes as well as cell membrane structure and catalytic activity categories. Moreover, CsgD influenced the expression of biofilm and stress response genes pgaA, motB, fimA, fimC, iraP, ompA, osmC, sufE and elaB, indicating that the CsgD participated in the resistance of E. coli by regulating the expression of biofilm and stress response. In brief, the transcription factor CsgD plays a key role in the stress resistance of E. coli, and is a potential target for treating and controlling biofilm.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Bacterianas/metabolismo , Transactivadores/metabolismo , Regulación Bacteriana de la Expresión Génica , Biopelículas , Proteínas de la Membrana Bacteriana Externa/genética
10.
J Environ Manage ; 342: 118232, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37270980

RESUMEN

Artificial neural networks exhibit significant advantages in terms of learning capability and generalizability, and have been increasingly applied in water quality prediction. Through learning a compressed representation of the input data, the Encoder-Decoder (ED) structure not only could remove noise and redundancies, but also could efficiently capture the complex nonlinear relationships of meteorological and water quality factors. The novelty of this study lies in proposing a multi-output Temporal Convolutional Network based ED model (TCN-ED) to make ammonia nitrogen forecasts for the first time. The contribution of our study is indebted to systematically assessing the significance of combining the ED structure with advanced neural networks for making accurate and reliable water quality forecasts. The water quality gauge station located at Haihong village of an island in Shanghai City of China constituted the case study. The model input contained one hourly water quality factor and hourly meteorological factors of 32 observed stations, where each factor was traced back to the previous 24 h and each meteorological factor of 32 gauge stations was aggregated into one areal average factor. A total of 13,128 hourly water quality and meteorological data were divided into two datasets corresponding to model training and testing stages. The Long Short-Term Memory based ED (LSTM-ED), LSTM and TCN models were constructed for comparison purposes. The results demonstrated that the developed TCN-ED model can succeed in mimicking the complex dependence between ammonia nitrogen and water quality and meteorological factors, and provide more accurate ammonia nitrogen forecasts (1- up to 6-h-ahead) than the LSTM-ED, LSTM and TCN models. The TCN-ED model, in general, achieved higher accuracy, stability and reliability compared with the other models. Consequently, the improvement can facilitate river water quality forecasting and early warning, as well as benefit water pollution prevention in the interest of river environmental restoration and sustainability.


Asunto(s)
Amoníaco , Monitoreo del Ambiente , Monitoreo del Ambiente/métodos , China , Reproducibilidad de los Resultados , Modelos Teóricos , Nitrógeno/análisis , Predicción
11.
Opt Lett ; 47(14): 3580-3583, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35838735

RESUMEN

The diffraction grating, as an element that can control the direction of the emitted light, is the key component used in holographic sampling three-dimensional (3D) displays. The structural accuracy of nanogratings greatly affects the precision of light modulation, thus influencing the cross talk and resolution in 3D displays. It is of great significance for the nondestructive measurement of nanogratings. However, existing measurement methods have certain limitations such as destructiveness and low measurement efficiency in the face of measuring such pixelated nanogratings. In this work, aimed at the measurement requirements and challenges of pixelated nanogratings in 3D displays, we propose to use a self-designed imaging Mueller matrix ellipsometer (IMME) for grating characterization. A sample containing 6 periods and 10 orientations of pixelated gratings is investigated to verify the effectiveness of the method used. Through the measurement and fitting data, the measurement data obtained by using the IMME can be well matched with the theoretical results. At the same time, the extraction results of the structural parameters, periods, and orientations are also consistent with the measurement results from scanning electron microscopy. It is expected that the IMME will provide a guarantee for the accurate display of 3D holography.

12.
Bull Entomol Res ; 112(1): 91-100, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34425923

RESUMEN

Parasitoid wasps are key agents for controlling insect pests in integrated pest management programs. Although many studies have revealed that the behavior of parasitic wasps can be influenced by insecticides, the strategies of patch time allocation and oviposition have received less attention. In the present study, we forced the endoparasitoid Meteorus pulchricornis to phoxim exposure at the LC30 and tested the foraging behavior within patches with different densities of the host, the larvae of the tobacco cutworm Spodoptera litura. The results showed that phoxim treatment can significantly increase the patch-leaving tendency of female wasps, while host density had no impact. The number of oviposition and the number of previous patch visits also significantly influenced the patch time allocation decisions. The occurrence of oviposition behavior was negatively affected by phoxim exposure; however, progeny production was similar among patches with different host densities. Phoxim exposure shaped the offspring fitness correlates, including longer durations from cocoon to adult wasps, smaller body size, and shorter longevity. The findings of the present study highlight the sublethal effects that reduce the patch residence time and the fitness of parasitoid offspring, suggesting that the application of phoxim in association with M. pulchricornis should be carefully schemed in agroecosystems.


Asunto(s)
Insecticidas , Avispas , Animales , Femenino , Interacciones Huésped-Parásitos , Larva/parasitología , Compuestos Organofosforados , Compuestos Organotiofosforados , Oviposición
13.
Pestic Biochem Physiol ; 181: 105004, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35082028

RESUMEN

Glyphodes pyloalis Walker is a destructive pest on mulberry trees and poses a significant threat to the sericultural industry in China. Phoxim and chlorfenapyr are two commonly used insecticides in mulberry fields. Glutathione-S-transferases (GSTs) comprise a multifunctional protein superfamily that plays important roles in the detoxification of insecticides and xenobiotic compounds in insects. However, whether GSTs participate in the tolerance of phoxim and chlorfenapyr in G. pyloalis is still unknown. To better understand the mechanism of insecticide tolerance in G. pyloalis, the enzymatic activity of GSTs was evaluated under phoxim and chlorfenapyr exposure, respectively. GST enzyme activity was significantly increased after 12, 36 and 48 h of phoxim treatment and 12, 24, 36 and 48 h of chlorfenapyr treatment. Subsequently, eighteen GST genes were identified from the larvae transcriptome of G. pyloalis. Among these, ten GpGSTs had GSH-binding sites and fifteen GpGSTs had variable hydrophobic substrate-binding sites. The expression levels of Delta-GpGST and Epsilon-GpGST genes were significantly influenced by phoxim and chlorfenapyr treatment, and by the time post insecticide application. Furthermore, after silencing GpGST-E4, the mortality rate of G. pyloalis larvae was increased when they were exposed to chlorfenapyr, but it did not significantly alter when the larvae were exposed to phoxim. Our results indicated the vital roles of GpGSTs in the tolerance of insecticides and this action depends on the categories of insecticides. The present study provides a theoretical basis for elucidating insecticide susceptibility and promotes functional research on GST genes in G. pyloalis.


Asunto(s)
Insecticidas , Morus , Mariposas Nocturnas , Animales , Glutatión , Insecticidas/toxicidad , Compuestos Organotiofosforados , Piretrinas , Transferasas
14.
Int J Mol Sci ; 23(16)2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-36012329

RESUMEN

Fatty acid synthase (FAS) is a key enzyme in the lipid synthesis pathway, however, its roles in insects remain largely unknown. Here, we firstly identified two FAS genes from the transcriptome dataset of the general cutworm Spodoptera litura, which is a destructive insect pest of many crops. Both SlFAS1 and SlFAS2 were highly expressed in third instar larvae and in their fat bodies. Then, we successfully silenced SlFAS1 in third instar larvae and the content of α-linolenic acid and triglyceride was significantly decreased. Besides that, the effect of FAS on the metamorphic development in S. litura was evaluated. The results indicate that after silencing SlFAS1, the survival rates of S. litura larvae decreased significantly compared to the control groups. Silencing SlFAS1 in fifth instar larvae resulted in more malformed pupae and adults, and the emergence rates were significantly reduced. Furthermore, the ecdysone content in the haemolymph of fifth instar larvae was significantly decreased after silencing SlFAS1. In addition, knocking down SlFAS1 significantly alters the expression of other key genes in the lipogenesis pathway, implying that FAS has an impact on the lipogenesis pathway. The present study deepens the understanding of FAS in insects and provides novel potential targets for managing insect pests.


Asunto(s)
Metabolismo de los Lípidos , Mariposas Nocturnas , Animales , Ácido Graso Sintasas/genética , Ácido Graso Sintasas/metabolismo , Insectos/metabolismo , Larva/genética , Metabolismo de los Lípidos/genética , Mariposas Nocturnas/metabolismo , Spodoptera
15.
J Cell Physiol ; 236(10): 7001-7013, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33724469

RESUMEN

Parathyroid hormone-related protein (PTHrP), the main cause of humoral hypercalcemia in malignancies, promotes cell proliferation and delays terminal cell maturation during embryonic development. Our previous study reported that PTHrP plays important roles in blastocyst formation, pluripotency gene expression, and histone acetylation during mouse preimplantation embryonic development. In this study, we further investigated the mechanism of preimplantation embryonic development regulated by PTHrP. Our results showed that Pthrp depletion decreased both the developmental rate of embryos at the cleavage stage and the cell number of morula-stage embryos. Pthrp-depleted embryos had significantly decreased levels of cyclin D1, phospho (p)-AKT (Thr308) and E2F1. However, Pthrp depletion did not cause significant changes in CDK4, ß-catenin or RUNX2 expression. In addition, our results indicated that Pthrp depletion promoted HDAC4 translocation from the cytoplasm to the nucleus in cleavage-stage embryos by stimulating the activity of protein phosphatase 2A (PP2A), which resulted in dephosphorylation of HDAC4. Taken together, these results suggest that PTHrP regulates cleavage division progression and blastocyst formation through the AKT/cyclin D1 pathway and that PTHrP modulates histone acetylation patterns through nuclear translocation of HDAC4 via PP2A-dependent HDAC4 dephosphorylation during preimplantation embryonic development in mice.


Asunto(s)
Blastocisto/metabolismo , Ciclina D1/metabolismo , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Proteína Relacionada con la Hormona Paratiroidea/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Acetilación , Transporte Activo de Núcleo Celular , Animales , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Histona Desacetilasas/genética , Ratones , Proteína Relacionada con la Hormona Paratiroidea/genética , Fosforilación , Proteína Fosfatasa 2/metabolismo , Transducción de Señal
16.
New Phytol ; 231(3): 1183-1194, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33982802

RESUMEN

Latitudinal gradients provide opportunities to better understand soil fungal community assembly and its relationship with vegetation, climate, soil and ecosystem function. Understanding the mechanisms underlying community assembly is essential for predicting compositional responses to changing environments. We quantified the relative importance of stochastic and deterministic processes in structuring soil fungal communities using patterns of community dissimilarity observed within and between 12 natural forests and related these to environmental variation within and among sites. The results revealed that whole fungal communities and communities of arbuscular and ectomycorrhizal fungi consistently exhibited divergent patterns but with less divergence for ectomycorrhizal fungi at most sites. Within those forests, no clear relationships were observed between the degree of divergence within fungal and plant communities. When comparing communities at larger spatial scales, among the 12 forests, we observed distinct separation in all three fungal groups among tropical, subtropical and temperate climatic zones. Soil fungal ß-diversity patterns between forests were also greater when comparing forests exhibiting high environmental heterogeneity. Taken together, although large-scale community turnover could be attributed to specific environmental drivers, the differences among fungal communities in soils within forests was high even at local scales.


Asunto(s)
Ecosistema , Micobioma , Biodiversidad , Bosques , Hongos , Suelo , Microbiología del Suelo , Árboles
17.
Opt Express ; 29(20): 32712-32727, 2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34615336

RESUMEN

The development of nanotechnology and nanomaterials has put forward higher requirements and challenges for precision measurement or nanometer measurement technology. In order to cope with this situation, a new type of imaging Mueller matrix ellipsometer (IMME) has been developed. A back focal plane scanning method is designed to make the IMME have the ability to measure multiple incident angles. A two-step calibration method is proposed to ensure the measurement accuracy of IMME. After calibration, the IMME can achieve measurement with wavelengths from 410 nm to 700 nm and incident angles from 0° to 65°. The lateral resolution of the IMME is demonstrated to be 0.8 µm over the entire measurement wavelength range. In addition, a Hadamard imaging mode is proposed to significantly improve the imaging contrast compared with the Mueller matrix imaging mode. Subsequently, the IMME is applied for the measurement of isotropic and anisotropic samples. Experimental results have demonstrated that the proposed IMME has the ability to characterize materials with complex features of lateral micron-distribution, vertical nano-thickness, optical anisotropy, etc., by virtue of its advantages of high lateral resolution and high precision ellipsometric measurement.

18.
Opt Express ; 29(20): 32158-32168, 2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34615293

RESUMEN

Computational super-resolution is a novel approach to break the diffraction limit. The Mueller matrix, which contains full-polarization information about the morphology and structure of a sample, can add super-resolution information and be a promising way to further enhance the resolution. Here we proposed a new approach called Mueller-matrix scattered-field microscopy (MSM) that relies on a computational reconstruction strategy to quantitatively determine the geometrical parameters of finite deep sub-wavelength nanostructures. The MSM adopts a high numerical-aperture objective lens to collect a broad range of spatial frequencies of the scattered field of a sample in terms of Mueller-matrix images. A rigorous forward scattering model is established for MSM, which takes into account the vectorial nature of the scattered field when passing through the imaging system and the effect of defocus in the measurement process. The experimental results performed on a series of isolated Si lines have demonstrated that MSM can resolve a feature size of λ/16 with a sub-7 nm accuracy. The MSM is fast and has a great measurement accuracy for nanostructures, which is expected to have a great potential application for future nanotechnology and nanoelectronics manufacturing.

19.
Opt Lett ; 46(18): 4618-4621, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34525062

RESUMEN

Dual rotating-compensator Mueller matrix polarimetry (DRC-MMP) has achieved wide spread applications in material characterization, nano-scale measurement, and biomedical diagnostics. However, the traditional calibration method for DRC-MMP relies on establishing an accurate system model, making its implementation cumbersome, especially in the presence of polarizing components that are to complex to be modeled. We propose a novel, to the best of our knowledge, eigenvalue calibration method for DRC-MMP without system modeling. Two specific basis vectors are introduced in order to transform the continuously modulated light intensity in DRC-MMP into a 5×5 projection matrix. Eigenvalue analysis is then performed based on the light intensity projection matrix to obtain the modulation matrix and the analysis matrix associated with the polarization state generator and the polarization state analyzer, respectively. The method is applied for DRC-MMP in both single-pass and double-pass setups. The experimental results have verified the proposed calibration method.

20.
Phys Chem Chem Phys ; 23(48): 27498-27507, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34874376

RESUMEN

Deep eutectic solvents have been found to facilitate the copolymerization of hydroxy acids and amino acids through an ester-amide exchange reaction, and to drive the formation of amino acid-enriched oligomers with peptide backbones. The complexity of oligomer distribution is significantly reduced in deep eutectic solvents and amide-linked oligomers can be selectively produced. In the present study, we investigated the kinetics of amide bond formation in deep eutectic solvents to understand how the solvents regulate the pathways of complex copolymerization. A mathematical model successfully simulated the reaction of a lactic acid/valine mixture in deep eutectic solvents at different temperatures and provided insight into the activation energy of each step. Our findings indicated that the esterification and the evaporation of hydroxy acids were greatly suppressed in deep eutectic solvents because of the strong interaction between the quaternary ammonium salts and the hydroxy acids. In contrast, the ester-amide exchange reaction in deep eutectic solvents was significantly enhanced by lowering the activation entropies. The synergic effect of reduced esterification and increased exchange leads to amino acid-enriched oligomers with high yield and high selectivity. Furthermore, the reduced evaporation of hydroxy acids in deep eutectic solvents may preserve limited reactants in the prebiotic scenario. These results reveal deep eutectic solvents as sustainable media for the simple synthesis of amide bonds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA