Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Public Health ; 23(1): 1186, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37340400

RESUMEN

INTRODUCTION: Long COVID (LC) is a multisystem disease with symptoms lasting weeks or months beyond the acute COVID-19 infection. Several manifestations are reported by people with LC, including effects on mental health, with varying degrees of psychological distress and disturbances to daily activities. Research conducted to identify effective interventions to support mental health among people with LC has been limited by the breadth and scope of studies. AIM: This review aims to identify interventions being tested to support mental health of people with LC. METHODS: A scoping review was conducted by searching five databases for articles published between January 2020 and early October 2022 to identify research evaluating interventions focused on improving mental health symptoms associated with LC. Results from all sources were checked for eligibility by two reviewers, and agreements were resolved by discussion. Gray literature and reference list of included studies and relevant reviews were scrutinised to identify any additional studies. Data extraction was conducted by one reviewer and checked by another reviewer for accuracy. RESULTS: Of the 940 studies identified, 17 were included, the design of which varied but included mainly case studies (n = 6) and clinical trials (n = 5). Several interventions were described, ranging from single interventions (e.g., pharmacologic) to more holistic, comprehensive suites of services (pharmacologic and non-pharmacologic). Several mental health outcomes were measured, mostly anxiety and depression. All included studies were reported to be associated with improvements in participants' mental health outcomes. CONCLUSION: This scoping review identified studies reporting on a variety of interventions to support mental health among people with LC. Although positive changes were reported by all studies, some were case studies and thus their findings must be interpreted with caution. There is a need for more research to be conducted to identify the impact of interventions on mental health of people with LC.


Asunto(s)
COVID-19 , Trastornos Mentales , Humanos , Salud Mental , Síndrome Post Agudo de COVID-19 , Trastornos Mentales/terapia , Trastornos Mentales/diagnóstico , Ansiedad/terapia
2.
Arch Environ Contam Toxicol ; 82(2): 266-280, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33877368

RESUMEN

The application of road de-icing salts has the potential to salinize fresh waters and degrade habitat for aquatic organisms. In the Australian Alps, the ecological effects of even small salinity increases from de-icing may be different than in North America and Europe because of (1) differences in the evolutionary history, and (2) areas with de-icing in Australia are not located in urbanized landscapes where de-icing has been largely studied elsewhere. In this study, we tried to determine the salinity increases attributable to de-icing in Australia and the effects of this increase in salinity to stream macroinvertebrates. We observed increased salt concentrations (as measured by continuous measurements of electrical conductivity (EC) and periodic measurements of chloride concentrations) in streams near two Australian ski resorts, during the snow seasons (June to September) of 2016 to 2018. The maximum EC observed in streams in salted sites near Perisher, New South Wales, was 390 µS cm-1 compared with a maximum of 26.5 µS cm-1 at unsalted sites. Lower EC values (i.e., maximum 61.1 µS cm-1) and short durations of salinity increases in streams near Falls Creek, Victoria, were not expected to cause an adverse biological response. Salt storage in the landscape was evident at salted sites near Perisher where EC was above background levels during periods of the year when no salt was applied to roads. Stream macroinvertebrate community composition differed at sites receiving run-off from road salting activities near Perisher. Abundances of Oligochaeta (worms) (up to 11-fold), Dugesiidae (flat worms) (up to fourfold), and Aphroteniinae (chironomids) (up to 14-fold) increased, whereas Leptophlebiidae (mayflies) decreased by up to 100% compared with non-salted sites. The taxa that were less abundant where de-icing salts were present tended to be the same taxa that toxicity testing revealed to be relatively salt sensitive species. This study demonstrates a causal link between de-icing salts, elevated stream salinity, and altered macroinvertebrate community composition in streams that received run-off from road de-icing activity in the Australian Alps.


Asunto(s)
Ephemeroptera , Sales (Química) , Animales , Australia , Ríos , Calidad del Agua
3.
Arch Environ Contam Toxicol ; 82(2): 281-293, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35091822

RESUMEN

Freshwater biota are at risk globally from increasing salinity, including increases from deicing salts in cold regions. A variety of metrics of toxicity are used when estimating the toxicity of substances and comparing the toxicity between substances. However, the implications of using different metrics are not widely appreciated. Using the mayfly Colobruscoides giganteus (Ephemeroptera: Colobruscoidea), we compare the toxicity of seven different salts where toxicity was estimated using two metrics: (1) the no-effect concentrations (NEC) and (2) the lethal concentrations for 10, 25 and 50% of the test populations (LCx). The LCx values were estimated using two different models, the classic log-logistic model and the newer toxicokinetic-toxicodynamic (TKTD) model. The NEC and both types of LCx values were estimated using Bayesian statistics. We also compared the toxicity of two salts (NaCl and CaCl2) for C. giganteus at water temperatures of 4 °C, 7 °C and 15 °C using the same metrics of toxicity. Our motivation for using a mayfly to assess salinity toxicity was because mayflies are generally salt sensitive, are ecologically important and are common in Australian (sub-)alpine streams. The temperature ranges were chosen to mimic winter, spring and summer water temperatures for Australian (sub-)alpine streams. Considering 144-h classical LCx values, we found toxicity differed between various salts, i.e., the lowest 144-h LC50 (8 mS/cm) for a salt used by a ski resort was half that of the highest 144-h LC50 from artificial marine salts and CaCl2 applied to roads (16 mS/cm). The analytical grade NaCl (as shown by 144-h LC50 value at 7 °C) was substantially more toxic (7.3 mS/cm) compared to analytical grade CaCl2 (12.5 mS/cm). Yet for NEC values, there were comparably fewer differences in toxicity between salts and none between the same salts at different temperatures. We conclude that LCx values are better suited to compare the difference in toxicity between substances or between the same substance at different test temperatures, while NEC values are better suited to estimating concentrations of substances that have no effect to the test species and endpoint measured under laboratory conditions.


Asunto(s)
Ephemeroptera , Contaminantes Químicos del Agua , Animales , Australia , Teorema de Bayes , Salinidad , Sales (Química) , Temperatura , Contaminantes Químicos del Agua/toxicidad
4.
Sci Total Environ ; 912: 169003, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38043815

RESUMEN

Increasing salinity is a concern for biodiversity in many freshwater ecosystems globally. Single species laboratory toxicity tests show major differences in freshwater organism survival depending on the specific ions that comprise salinity types and/or their ion ratios. Toxicity has been shown to be reduced by altering ionic composition, despite increasing (total) salinity. For insistence, single species tests show the toxicity of sodium bicarbonate (NaHCO3, which commonly is a large proportion of the salts from coalbeds) to freshwater invertebrates is reduced by adding magnesium (Mg2+) or chloride (Cl-). However, it is uncertain whether reductions in mortality observed in single-species laboratory tests predict effects within populations, communities and to ecosystem processes in more complex multi-species systems both natural and semi-natural. Here we report the results of an outdoor multi-species mesocosm experiment to determine if the effects of NaHCO3 are reduced by increasing the concentrations of Mg2+ or Cl- on: a) stream macroinvertebrate populations and communities; b) benthic chlorophyll-a and; c) the ecosystem process of leaf litter decomposition. We found a large effect of a high NaHCO3 concentration (≈4.45 mS/cm) with reduced abundances of multiple taxa, reduced emergence of adult insects and reduced species richness, altered community structure and increased leaf litter breakdown rates but no effect on benthic chlorophyll-a. However, despite predictions based on laboratory findings, we found no evidence that the addition of either Mg2+ or Cl- altered the effect of NaHCO3. In semi-natural environments such as mesocosms, and natural environments, organisms are subject to varying temperature and habitat factors, while also interacting with other species and trophic levels (e.g. predation, competition, facilitation), which are absent in single species laboratory tests. Thus, it should not be assumed single-species tests are good predictors of the effects of changing ionic compositions on stream biota in more natural environments.


Asunto(s)
Cloruros , Ecosistema , Animales , Bicarbonatos , Cloruros/toxicidad , Clorofila , Clorofila A , Invertebrados , Magnesio , Ríos/química , Bicarbonato de Sodio/farmacología
5.
Environ Pollut ; 291: 118092, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34520947

RESUMEN

Environmental degradation of rivers in agricultural landscapes is typically caused by multiple co-occurring stressors, but how interactions among stressors affect freshwater ecosystems is poorly understood. Therefore, we investigated the sensitivity and specificity of several measures of benthic macroinvertebrate community response to the individual and combined effects of the pesticide sulfoxaflor (SFX), increased sand sedimentation and elevated nutrients using outdoor recirculating mesocosms. Among the single stressor treatments, nutrients had no observable impact and sand only affected one community response measure compared to controls. High SFX levels had the largest effects on benthic macroinvertebrate communities, negatively affecting six of seven macroinvertebrate response measures. Sulfoxaflor had similar adverse effects on biota when in combination with sand and nutrients in the multi-stressor treatment, suggesting that generally SFX has overwhelming and pervasive effects irrespective of the presence of the other stressors. In contrast to SFX, elevated nutrients had no detectable effect on macroinvertebrate communities, likely as a consequence of nutrients being rapidly taken up by bacteria rather than by benthic algae. Elevated sand sedimentation increased the negative effects of SFX on sediment sensitive taxa, but generally had limited biological effects. This was despite the levels of sedimentation in our treatments being at concentrations that have caused large impacts in other studies. This research points to direct and rapid toxic effects of SFX on stream macroinvertebrates, contrasting with effects of the other stressors. This study emphasises that pesticide effects could be misattributed to other common freshwater stressors, potentially focussing restoration actions on a stressor of lesser importance.


Asunto(s)
Ecosistema , Invertebrados , Agricultura , Animales , Monitoreo del Ambiente , Sedimentos Geológicos , Ríos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA