Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38732019

RESUMEN

Thrombosis is the pathological clot formation under abnormal hemodynamic conditions, which can result in vascular obstruction, causing ischemic strokes and myocardial infarction. Thrombus growth under moderate to low shear (<1000 s-1) relies on platelet activation and coagulation. Thrombosis at elevated high shear rates (>10,000 s-1) is predominantly driven by unactivated platelet binding and aggregating mediated by von Willebrand factor (VWF), while platelet activation and coagulation are secondary in supporting and reinforcing the thrombus. Given the molecular and cellular level information it can access, multiscale computational modeling informed by biology can provide new pathophysiological mechanisms that are otherwise not accessible experimentally, holding promise for novel first-principle-based therapeutics. In this review, we summarize the key aspects of platelet biorheology and mechanobiology, focusing on the molecular and cellular scale events and how they build up to thrombosis through platelet adhesion and aggregation in the presence or absence of platelet activation. In particular, we highlight recent advancements in multiscale modeling of platelet biorheology and mechanobiology and how they can lead to the better prediction and quantification of thrombus formation, exemplifying the exciting paradigm of digital medicine.


Asunto(s)
Plaquetas , Hemostasis , Trombosis , Humanos , Trombosis/metabolismo , Plaquetas/metabolismo , Hemostasis/fisiología , Activación Plaquetaria , Animales , Adhesividad Plaquetaria , Agregación Plaquetaria
2.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37108551

RESUMEN

Implantable Cardiovascular Therapeutic Devices (CTD), while lifesaving, impart supraphysiologic shear stress to platelets, resulting in thrombotic and bleeding coagulopathy. We previously demonstrated that shear-mediated platelet dysfunction is associated with downregulation of platelet GPIb-IX-V and αIIbß3 receptors via generation of Platelet-Derived MicroParticles (PDMPs). Here, we test the hypothesis that sheared PDMPs manifest phenotypical heterogeneity of morphology and receptor surface expression and modulate platelet hemostatic function. Human gel-filtered platelets were exposed to continuous shear stress. Alterations of platelet morphology were visualized using transmission electron microscopy. Surface expression of platelet receptors and PDMP generation were quantified by flow cytometry. Thrombin generation was quantified spectrophotometrically, and platelet aggregation was measured by optical aggregometry. Shear stress promotes notable alterations in platelet morphology and ejection of distinctive types of PDMPs. Shear-mediated microvesiculation is associated with the remodeling of platelet receptors, with PDMPs expressing significantly higher levels of adhesion receptors (αIIbß3, GPIX, PECAM-1, P-selectin, and PSGL-1) and agonist receptors (P2Y12 and PAR1). Sheared PDMPs promote thrombin generation and inhibit platelet aggregation induced by collagen and ADP. Sheared PDMPs demonstrate phenotypic heterogeneity as to morphology and defined patterns of surface receptors and impose a bidirectional effect on platelet hemostatic function. PDMP heterogeneity suggests that a range of mechanisms are operative in the microvesiculation process, contributing to CTD coagulopathy and posing opportunities for therapeutic manipulation.


Asunto(s)
Micropartículas Derivadas de Células , Hemostáticos , Humanos , Trombina/metabolismo , Micropartículas Derivadas de Células/metabolismo , Plaquetas/metabolismo , Agregación Plaquetaria , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Hemostáticos/metabolismo , Activación Plaquetaria , Estrés Mecánico
4.
Platelets ; 31(1): 68-78, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30810440

RESUMEN

Despite the transient hyporeactivity of neonatal platelets, full-term neonates do not display a bleeding tendency, suggesting potential compensatory mechanisms which allow for balanced and efficient neonatal hemostasis. This study aimed to utilize small-volume, whole blood platelet functional assays to assess the neonatal platelet response downstream of the hemostatic platelet agonists thrombin and adenosine diphosphate (ADP). Thrombin activates platelets via the protease-activated receptors (PARs) 1 and 4, whereas ADP signals via the receptors P2Y1 and P2Y12 as a positive feedback mediator of platelet activation. We observed that neonatal and cord blood-derived platelets exhibited diminished PAR1-mediated granule secretion and integrin activation relative to adult platelets, correlating to reduced PAR1 expression by neonatal platelets. PAR4-mediated granule secretion was blunted in neonatal platelets, correlating to lower PAR4 expression as compared to adult platelets, while PAR4 mediated GPIIb/IIIa activation was similar between neonatal and adult platelets. Under high shear stress, cord blood-derived platelets yielded similar thrombin generation rates but reduced phosphatidylserine expression as compared to adult platelets. Interestingly, we observed enhanced P2Y1/P2Y12-mediated dense granule trafficking in neonatal platelets relative to adults, although P2Y1/P2Y12 expression in neonatal, cord, and adult platelets were similar, suggesting that neonatal platelets may employ an ADP-mediated positive feedback loop as a potential compensatory mechanism for neonatal platelet hyporeactivity.


Asunto(s)
Plaquetas/metabolismo , Gránulos Citoplasmáticos/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Transporte Biológico , Biomarcadores , Coagulación Sanguínea , Humanos , Recién Nacido , Integrinas/metabolismo , Activación Plaquetaria , Agregación Plaquetaria , Resistencia al Corte , Trombina/metabolismo
5.
Artif Organs ; 44(6): E226-E237, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31876310

RESUMEN

Mechanical circulatory support (MCS) devices continue to be hampered by thrombotic adverse events (AEs), a consequence of device-imparted supraphysiologic shear stresses, leading to shear-mediated platelet activation (SMPA). In advancing MCS devices from design to clinical use, in vitro circulatory loops containing the device under development and testing are utilized as a means of assessing device thrombogenicity. Physical characteristics of these test circulatory loops may also contribute to inadvertent platelet activation through imparted shear stress, adding inadvertent error in evaluating MCS device thrombogenicity. While investigators normally control for the effect of a loop, inadvertent addition of what are considered innocuous connectors may impact test results. Here, we tested the effect of common, additive components of in vitro circulatory test loops, that is, connectors and loop geometry, as to their additive contribution to shear stress via both in silico and in vitro models. A series of test circulatory loops containing a ventricular assist device (VAD) with differing constituent components, were established in silico including: loops with 0~5 Luer connectors, a loop with a T-connector creating 90° angulation, and a loop with 90° angulation. Computational fluid dynamics (CFD) simulations were performed using a k - ω shear stress transport turbulence model to platelet activation index (PAI) based on a power law model. VAD-operated loops replicating in silico designs were assembled in vitro and gel-filtered human platelets were recirculated within (1 hour) and SMPA was determined. CFD simulations demonstrated high shear being introduced at non-smooth regions such as edge-connector boundaries, tubing, and at Luer holes. Noticeable peaks' shifts of scalar shear stress (sss) distributions toward high shear-region existed with increasing loop complexity. Platelet activation also increased with increasing shear exposure time, being statistically higher when platelets were exposed to connector-employed loop designs. The extent of platelet activation in vitro could be successfully predicted by CFD simulations. Loops employing additional components (non-physiological flow pattern connectors) resulted in higher PAI. Loops with more components (5-connector loop and 90° T-connector) showed 63% and 128% higher platelet activation levels, respectively, versus those with fewer (0-connector (P = .023) and a 90° heat-bend loop (P = .0041). Our results underscore the importance of careful consideration of all component elements, and suggest the need for standardization in designing in vitro circulatory loops for MCS device evaluation to avoid inadvertent additive SMPA during device evaluation, confounding overall results. Specifically, we caution on the use and inadvertent introduction of additional connectors, ports, and other shear-generating elements which introduce artifact, clouding primary device evaluation via introduction of additive SMPA.


Asunto(s)
Diseño de Equipo , Corazón Auxiliar/efectos adversos , Hemodinámica/fisiología , Trombosis/prevención & control , Adulto , Artefactos , Plaquetas/fisiología , Simulación por Computador , Voluntarios Sanos , Humanos , Activación Plaquetaria/fisiología , Resistencia al Corte , Estrés Mecánico , Trombosis/etiología
6.
Artif Organs ; 40(6): 586-95, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26527361

RESUMEN

Implantation of mechanical circulatory support (MCS) devices-ventricular assist devices and the total artificial heart-has emerged as a vital therapy for advanced and end-stage heart failure. Unfortunately, MCS patients face the requirement of life-long antiplatelet and anticoagulant therapy to combat thrombotic complications resulting from the dynamic and supraphysiologic shear stress conditions associated with such devices, whose effect on platelet activation is poorly understood. We developed a syringe-capillary viscometer-the "platelet hammer"-that repeatedly exposed platelets to average shear stresses up to 1000 dyne/cm(2) for as short as 25 ms. Platelet activation state was measured using a modified prothrombinase assay, with morphological changes analyzed using scanning electron microscopy. We observed an increase in platelet activation state and post-high shear platelet activation rate, or sensitization, with an increase in stress accumulation (SA), the product of shear stress and exposure time. A significant increase in platelet activation state was observed beyond an SA of 1500 dyne-s/cm(2) , with a marked increase in pseudopod length visible beyond an SA of 1000 dyne-s/cm(2) . Utility of the platelet hammer extends to studies of other shear-dependent pathologies, and may assist development of approaches to enhance the safety and effectiveness of MCS devices and objective antithrombotic pharmacotherapy management.


Asunto(s)
Circulación Asistida/efectos adversos , Plaquetas/patología , Activación Plaquetaria , Estrés Mecánico , Adulto , Circulación Asistida/instrumentación , Diseño de Equipo , Femenino , Humanos , Masculino , Trombosis/etiología
7.
Perfusion ; 31(5): 401-8, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26590166

RESUMEN

Despite the clinical success and growth in the utilization of continuous flow ventricular assist devices (cfVADs) for the treatment of advanced heart failure, hemolysis and thrombosis remain major limitations. Inadequate and/or ineffective anticoagulation regimens, combined with high pump speed and non-physiological flow patterns, can result in hemolysis which often is accompanied by pump thrombosis. An unexpected increase in cfVADs thrombosis was reported by multiple major VAD implanting centers in 2014, highlighting the association of hemolysis and a rise in lactate dehydrogenase (LDH) presaging thrombotic events. It is well established that thrombotic complications arise from the abnormal shear stresses generated by cfVADs. What remains unknown is the link between cfVAD-associated hemolysis and pump thrombosis. Can hemolysis of red blood cells (RBCs) contribute to platelet aggregation, thereby, facilitating prothrombotic complications in cfVADs? Herein, we examine the effect of RBC-hemolysate and selected major constituents, i.e., lactate dehydrogenase (LDH) and plasma free hemoglobin (pHb) on platelet aggregation, utilizing electrical resistance aggregometry. Our hypothesis is that elements of RBCs, released as a result of shear-mediated hemolysis, will contribute to platelet aggregation. We show that RBC hemolysate and pHb, but not LDH, are direct contributors to platelet aggregation, posing an additional risk mechanism for cfVAD thrombosis.


Asunto(s)
Corazón Auxiliar , Agregación Plaquetaria , Insuficiencia Cardíaca , Hemólisis , Humanos , Prohibitinas , Trombosis/tratamiento farmacológico
8.
Biomed Microdevices ; 17(6): 117, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26578003

RESUMEN

Thrombosis of ventricular assist devices (VADs) compromises their performance, with associated risks of systemic embolization, stroke, pump stop and possible death. Anti-thrombotic (AT) drugs, utilized to limit thrombosis, are largely dosed empirically, with limited testing of their efficacy. Further, such testing, if performed, typically examines efficacy under static conditions, which is not reflective of actual shear-mediated flow. Here we adopted our previously developed Device Thrombogenicity Emulation methodology to design microfluidic platforms able to emulate representative shear stress profiles of mechanical circulatory support (MCS) devices. Our long-term goal is to utilize these systems for point-of-care (POC) personalized testing of AT efficacy under specific, individual shear profiles. First, we designed different types of microfluidic channels able to replicate sample shear stress patterns observed in MCS devices. Second, we explored the flexibility of microfluidic technology in generating dynamic shear stress profiles by modulating the geometrical features of the channels. Finally, we designed microfluidic channel systems able to emulate the shear stress profiles of two commercial VADs. From CFD analyses, the VAD-emulating microfluidic systems were able to replicate the main characteristics of the shear stress waveforms of the macroscale VADs (i.e., shear stress peaks and duration). Our results establish the basis for development of a lab-on-chip POC system able to perform device-specific and patient-specific platelet activation state assays.


Asunto(s)
Plaquetas/citología , Microfluídica , Activación Plaquetaria , Biología Computacional , Diseño de Equipo , Estudios de Factibilidad , Corazón Auxiliar , Humanos , Dispositivos Laboratorio en un Chip , Sistemas de Atención de Punto , Estrés Mecánico , Trombosis/terapia
9.
J Thromb Thrombolysis ; 37(4): 499-506, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24043375

RESUMEN

Ventricular assist devices (VADs) are implanted in patients with end-stage heart failure to provide both short- and long-term hemodynamic support. Unfortunately, bleeding and thromboembolic complications due to the severely disturbed, dynamic flow conditions generated within these devices require complex, long-term antiplatelet and anticoagulant therapy. While several studies have examined the effectiveness of one such agent, aspirin, under flow conditions, data comparing the efficacy of in vitro and in vivo metabolized aspirin is lacking. Two sets of studies were conducted in vitro with purified human platelets circulating for 30 min in a flow loop containing the DeBakey VAD (MicroMed Cardiovascular, Houston, TX, USA): (a) 20 µM aspirin was added exogenously in vitro to platelets isolated from aspirin-free subjects, and (b) platelets were obtained from donors 2 h (n = 14) and 20 h (n = 13) after ingestion of 1,000 mg aspirin. Near real-time platelet activation state (PAS) was measured with a modified prothrombinase-based assay. Platelets exposed to aspirin in vitro and in vivo (metabolized) showed 28.2 and 25.3 % reduction in platelet activation rate, respectively, compared to untreated controls. Our results demonstrate that in vitro treatment with antiplatelet drugs such as aspirin is as effective as in vivo metabolized aspirin in testing the effect of reducing shear-induced platelet activation in the VAD. Using the PAS assay provides a practical in vitro alternative to in vivo testing of antiplatelet efficacy, as well as for testing the thrombogenic performance of devices during their research and development.


Asunto(s)
Aspirina , Plaquetas/metabolismo , Corazón Auxiliar , Activación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria , Aspirina/farmacocinética , Aspirina/farmacología , Donantes de Sangre , Plaquetas/patología , Femenino , Humanos , Masculino , Inhibidores de Agregación Plaquetaria/farmacocinética , Inhibidores de Agregación Plaquetaria/farmacología , Trombosis/sangre , Trombosis/etiología , Trombosis/prevención & control
10.
J Biomech Eng ; 135(2): 021021, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23445066

RESUMEN

Calcific aortic valve disease is the most common and life threatening form of valvular heart disease, characterized by stenosis and regurgitation, which is currently treated at the symptomatic end-stages via open-heart surgical replacement of the diseased valve with, typically, either a xenograft tissue valve or a pyrolytic carbon mechanical heart valve. These options offer the clinician a choice between structural valve deterioration and chronic anticoagulant therapy, respectively, effectively replacing one disease with another. Polymeric prosthetic heart valves (PHV) offer the promise of reducing or eliminating these complications, and they may be better suited for the new transcatheter aortic valve replacement (TAVR) procedure, which currently utilizes tissue valves. New evidence indicates that the latter may incur damage during implantation. Polymer PHVs may also be incorporated into pulsatile circulatory support devices such as total artificial heart and ventricular assist devices that currently employ mechanical PHVs. Development of polymer PHVs, however, has been slow due to the lack of sufficiently durable and biocompatible polymers. We have designed a new trileaflet polymer PHV for surgical implantation employing a novel polymer-xSIBS-that offers superior bio-stability and durability. The design of this polymer PHV was optimized for reduced stresses, improved hemodynamic performance, and reduced thrombogenicity using our device thrombogenicity emulation (DTE) methodology, the results of which have been published separately. Here we present our new design, prototype fabrication methods, hydrodynamics performance testing, and platelet activation measurements performed in the optimized valve prototype and compare it to the performance of a gold standard tissue valve. The hydrodynamic performance of the two valves was comparable in all measures, with a certain advantage to our valve during regurgitation. There was no significant difference between the platelet activation rates of our polymer valve and the tissue valve, indicating that similar to the latter, its recipients may not require anticoagulation. This work proves the feasibility of our optimized polymer PHV design and brings polymeric valves closer to clinical viability.


Asunto(s)
Prótesis Valvulares Cardíacas , Hemodinámica , Polímeros , Análisis de Elementos Finitos , Humanos , Hidrodinámica , Activación Plaquetaria , Diseño de Prótesis , Estrés Mecánico
11.
Ann Biomed Eng ; 51(5): 1094-1105, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37020171

RESUMEN

Platelet adhesion to blood vessel walls is a key initial event in thrombus formation in both vascular disease processes and prosthetic cardiovascular devices. We extended a deformable multiscale model (MSM) of flowing platelets, incorporating Dissipative Particle Dynamics (DPD) and Coarse-Grained Molecular Dynamics (CGMD) describing molecular-scale intraplatelet constituents and their interaction with surrounding flow, to predict platelet adhesion dynamics under physiological flow shear stresses. Binding of platelet glycoprotein receptor Ibα (GPIbα) to von Willebrand factor (vWF) on the blood vessel wall was modeled by a molecular-level hybrid force field and validated with in vitro microchannel experiments of flowing platelets at 30 dyne/cm2. High frame rate videos of flipping platelets were analyzed with a Semi-Unsupervised Learning System (SULS) machine learning-guided imaging approach to segment platelet geometries and quantify adhesion dynamics parameters. In silico flipping dynamics followed in vitro measurements at 15 and 45 dyne/cm2 with high fidelity, predicting GPIbα-vWF bonding and debonding processes, distribution of bonds strength, and providing a biomechanical insight into initiation of the complex platelet adhesion process. The adhesion model and simulation framework can be further integrated with our established MSMs of platelet activation and aggregation to simulate initial mural thrombus formation on blood vessel walls.


Asunto(s)
Trombosis , Factor de von Willebrand , Humanos , Factor de von Willebrand/metabolismo , Unión Proteica , Adhesividad Plaquetaria/fisiología , Plaquetas/fisiología , Simulación de Dinámica Molecular
12.
bioRxiv ; 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36798322

RESUMEN

Objective: Implantable cardiovascular therapeutic devices (CTD) including stents, percutaneous heart valves and ventricular assist devices, while lifesaving, impart supraphysiologic shear stress to platelets resulting in thrombotic and bleeding device-related coagulopathy. We previously demonstrated that shear-mediated platelet dysfunction is associated with downregulation of platelet GPIb-IX-V and αIIbß3 receptors via generation of platelet-derived microparticles (PDMPs). Here, we test the hypothesis that shear-generated PDMPs manifest phenotypical heterogeneity of their morphology and surface expression of platelet receptors, and modulate platelet hemostatic function. Approach and Results: Human gel-filtered platelets were exposed to continuous shear stress and sonication. Alterations of platelet morphology were visualized using transmission electron microscopy. Surface expression of platelet receptors and PDMP generation were quantified by flow cytometry. Thrombin generation was quantified spectrophotometrically, and platelet aggregation in plasma was measured by optical aggregometry. We demonstrate that platelet exposure to shear stress promotes notable alterations in platelet morphology and ejection of several distinctive types of PDMPs. Shear-mediated microvesiculation is associated with the differential remodeling of platelet receptors with PDMPs expressing significantly higher levels of both adhesion (α IIb ß 3 , GPIX, PECAM-1, P-selectin, and PSGL-1) and agonist-evoked receptors (P 2 Y 12 & PAR1). Shear-mediated PDMPs have a bidirectional effect on platelet hemostatic function, promoting thrombin generation and inhibiting platelet aggregation induced by collagen and ADP. Conclusions: Shear-generated PDMPs demonstrate phenotypic heterogeneity as to morphologic features and defined patterns of surface receptor alteration, and impose a bidirectional effect on platelet hemostatic function. PDMP heterogeneity suggests that a range of mechanisms are operative in the microvesiculation process, contributing to CTD coagulopathy and posing opportunities for therapeutic manipulation.

13.
Bioengineering (Basel) ; 10(12)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38136005

RESUMEN

Introduction: Obstructive sleep apnea (OSA) and loud snoring are conditions with increased cardiovascular risk and notably an association with stroke. Central in stroke are thrombosis and thromboembolism, all related to and initiaing with platelet activation. Platelet activation in OSA has been felt to be driven by biochemical and inflammatory means, including intermittent catecholamine exposure and transient hypoxia. We hypothesized that snore-associated acoustic vibration (SAAV) is an activator of platelets that synergizes with catecholamines and hypoxia to further amplify platelet activation. Methods: Gel-filtered human platelets were exposed to snoring utilizing a designed vibro-acoustic exposure device, varying the time and intensity of exposure and frequency content. Platelet activation was assessed via thrombin generation using the Platelet Activity State assay and scanning electron microscopy. Comparative activation induced by epinephrine and hypoxia were assessed individually as well as additively with SAAV, as well as the inhibitory effect of aspirin. Results: We demonstrate that snore-associated acoustic vibration is an independent activator of platelets, which is dependent upon the dose of exposure, i.e., intensity x time. In snoring, acoustic vibrations associated with low-frequency sound content (200 Hz) are more activating than those associated with high frequencies (900 Hz) (53.05% vs. 22.08%, p = 0.001). Furthermore, SAAV is additive to both catecholamines and hypoxia-mediated activation, inducing synergistic activation. Finally, aspirin, a known inhibitor of platelet activation, has no significant effect in limiting SAAV platelet activation. Conclusion: Snore-associated acoustic vibration is a mechanical means of platelet activation, which may drive prothrombosis and thrombotic risk clinically observed in loud snoring and OSA.

14.
J Thromb Haemost ; 20(11): 2632-2645, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35962592

RESUMEN

BACKGROUND: Developmental ontogeny of neonatal thrombopoiesis retains characteristics that are distinct from adults although molecular mechanisms remain unestablished. METHODS: We applied multiparameter quantitative platelet responses with integrated ribosome profiling/transcriptomic studies to better define gene/pathway perturbations regulating the neonatal-to-adult transition. A bioinformatics pipeline was developed to identify stable, neonatal-restricted platelet biomarkers for clinical application. RESULTS: Cord blood (CB) platelets retained the capacity for linear agonist-receptor coupling linked to phosphatidylserine (PS) exposure and α-granule release, although a restricted block in cross-agonist activation pathways was evident. Functional immaturity of synergistic signaling pathways was due to younger ontogenetic age and singular underdevelopment of the protein secretory gene network, with reciprocal expansion of developmental pathways (E2F, G2M checkpoint, c-Myc) important for megakaryocytopoiesis. Genetic perturbations regulating vesicle transport and fusion (TOM1L1, VAMP3, SNAP23, and DNM1L) and PS exposure and procoagulant activity (CLCN3) were the most significant, providing a molecular explanation for globally attenuated responses. Integrated transcriptomic and ribosomal footprints identified highly abundant (ribosome-protected) DEFA3 (encoding human defensin neutrophil peptide 3) and HBG1 as stable biomarkers of neonatal thrombopoiesis. Studies comparing CB- or adult-derived megakaryocytopoiesis confirmed inducible and abundant DEFA3 antigenic expression in CB megakaryocytes, ~3.5-fold greater than in leukocytes (the most abundant source in humans). An initial feasibility cohort of at-risk pregnancies manifested by maternal/fetal hemorrhage (chimerism) were applied for detection and validation of platelet HBG1 and DEFA3 as neonatal thrombopoiesis markers, most consistent for HBG1, which displayed gestational age-dependent expression. CONCLUSIONS: These studies establish an ontogenetically divergent stage of neonatal thrombopoiesis, and provide initial feasibility studies to track disordered fetal-to-adult megakaryocytopoiesis in vivo.


Asunto(s)
Plaquetas , Fosfatidilserinas , Recién Nacido , Embarazo , Femenino , Humanos , Plaquetas/metabolismo , Fosfatidilserinas/metabolismo , Proteína 3 de Membrana Asociada a Vesículas/metabolismo , Trombopoyesis/genética , Megacariocitos/metabolismo , Péptidos/metabolismo , Defensinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
15.
Biomech Model Mechanobiol ; 20(3): 1013-1030, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33782796

RESUMEN

We developed a multiscale model for simulating aggregation of multiple, free-flowing platelets in low-intermediate shear viscous flow, in which aggregation is mediated by the interaction of αIIbß3 receptors on the platelet membrane and fibrinogen (Fg). This multiscale model uses coarse grained molecular dynamics (CGMD) for platelets at the microscales and dissipative particle dynamics (DPD) for the shear flow at the macroscales, employing our hybrid aggregation force field for modeling molecular level receptor ligand bonds. We define an aggregation tensor and use it to quantify the molecular level contact characteristics between platelets in an aggregate. We perform numerical studies under different flow conditions for platelet doublets and triplets and evaluate the contact area, detaching force and minimum distance between different pairs of platelets in an aggregate. We also present the dynamics of applied stress and velocity magnitude distributions on the platelet membrane during aggregation and quantify the increase in stress in the contact region under different flow conditions. Integrating the knowledge from our previously validated models, together with new aggregation scenarios, our model can dynamically quantify aggregation characteristics and map stress and velocity distribution on the platelet membrane which are difficult to measure in vitro, thus providing an insight into mechanotransduction bond formation response of platelets to flow-induced shear stresses. This modeling framework, together with the tensor method for quantifying inter-platelet contact, can be extended to simulate and analyze larger aggregates and their adhesive properties.


Asunto(s)
Modelos Biológicos , Agregación Plaquetaria/fisiología , Reología , Resistencia al Corte , Plaquetas/fisiología , Simulación por Computador , Humanos , Análisis Numérico Asistido por Computador , Estrés Mecánico
16.
Ann Biomed Eng ; 49(12): 3452-3464, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33973127

RESUMEN

Platelet adhesion to blood vessel walls in shear flow is essential to initiating the blood coagulation cascade and prompting clot formation in vascular disease processes and prosthetic cardiovascular devices. Validation of predictive adhesion kinematics models at the single platelet level is difficult due to gaps in high resolution, dynamic morphological data or a mismatch between simulation and experimental parameters. Gel-filtered platelets were perfused at 30 dyne/cm2 in von Willebrand Factor (vWF)-coated microchannels, with flipping platelets imaged at high spatial and temporal resolution. A semi-unsupervised learning system (SULS), consisting of a series of convolutional neural networks, was used to segment platelet geometry, which was compared with expert-analyzed images. Resulting time-dependent rotational angles were smoothed with wavelet-denoising and shifting techniques to characterize the rotational period and quantify flipping kinematics. We observed that flipping platelets do not follow the previously-modeled modified Jefferey orbit, but are characterized by a longer lift-off and shorter reattachment period. At the juncture of the two periods, rotational velocity approached 257.48 ± 13.31 rad/s. Our SULS approach accurately segmented large numbers of moving platelet images to identify distinct adhesive kinematic characteristics which may further validate the physical accuracy of individual platelet motion in multiscale models of shear-mediated thrombosis.


Asunto(s)
Aprendizaje Automático , Adhesividad Plaquetaria/fisiología , Fenómenos Biomecánicos , Plaquetas/citología , Humanos , Técnicas In Vitro , Redes Neurales de la Computación , Trombosis/fisiopatología
17.
J Biomech ; 117: 110275, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33529943

RESUMEN

Flow-induced platelet activation prompts complex filopodial formation. Continuum methods fail to capture such molecular-scale mechanisms. A multiscale numerical model was developed to simulate this activation process, where a Dissipative Particle Dynamics (DPD) model of viscous blood flow is interfaced with a Coarse Grained Molecular Dynamics (CGMD) platelet model. Embedded in DPD blood flow, the macroscopic dynamic stresses are interactively transferred to the CGMD model, inducing intra-platelet associated events. The platelets activate by a biomechanical transductive linkage chain and dynamically change their shape in response. The models are fully coupled via a hybrid-potential interface and multiple time-stepping (MTS) schemes for handling the disparity between the spatiotemporal scales. Cumulative hemodynamic stresses that may lead to platelet activation are mapped on the surface membrane and simultaneously transmitted to the cytoplasm and cytoskeleton. Upon activation, the flowing platelets lose their quiescent discoid shape and evolve by forming filopodia. The model predictions were validated by a set of in vitro experiments, Platelets were exposed to various combinations of shear stresses and durations in our programmable hemodynamic shearing device (HSD). Their shape change was measured at multiple time points using scanning electron microscopy (SEM). The CGMD model parameters were fine-tuned by interrogating a parameter space established in these experiments. Segmentation of the SEM imaging streams was conducted by a deep machine learning system. This model can be further employed to simulate shear mediated platelet activation thrombosis initiation and to study the effects of modulating platelet properties to enhance their shear resistance via mechanotransduction pathways.


Asunto(s)
Mecanotransducción Celular , Trombosis , Plaquetas , Simulación por Computador , Humanos , Activación Plaquetaria , Estrés Mecánico
18.
Comput Med Imaging Graph ; 89: 101895, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33798915

RESUMEN

We developed a fast and accurate deep learning approach employing a semi-unsupervised learning system (SULS) for capturing the real-time noisy, sparse, and ambiguous images of platelet activation. Outperforming several leading supervised learning methods when applied to segment various platelet morphologies, the SULS detects their complex boundaries at submicron resolutions and it massively decreases to only a few hours for segmenting streaming images of 45 million platelets that would have taken 40 years to annotate manually. For the first time, the fast dynamics of pseudopod formation and platelet morphological changes including membrane tethers and transient tethering to vessels are accurately captured.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Aprendizaje Automático no Supervisado , Plaquetas
19.
J Biomech ; 123: 110415, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34052772

RESUMEN

Shear-mediated platelet activation (SMPA) in the "free flow" is the net result of a range of cell mechanobiological mechanisms. Previously, we outlined three main groups of mechanisms including: 1) mechano-destruction - i.e. additive platelet (membrane) damage; 2) mechano-activation - i.e. activation of shear-sensitive ion channels and pores; and 3) mechano-transduction - i.e. "outside-in" signaling via a range of transducers. Here, we report on recent advances since our original report which describes additional features of SMPA. A clear "signature" of SMPA has been defined, allowing differentiation from biochemically-mediated activation. Notably, SMPA is characterized by mitochondrial dysfunction, platelet membrane eversion, externalization of anionic phospholipids, and increased thrombin generation on the platelet surface. However, SMPA does not lead to integrin αIIbß3 activation or P-selectin exposure due to platelet degranulation, as is commonly observed in biochemical activation. Rather, downregulation of GPIb, αIIbß3, and P-selectin surface expression is evident. Furthermore, SMPA is accompanied by a decrease in overall platelet size coupled with a concomitant, progressive increase in microparticle generation. Shear-ejected microparticles are highly enriched in GPIb and αIIbß3. These observations indicate the enhanced diffusion, migration, or otherwise dispersion of platelet adhesion receptors to membrane zones, which are ultimately shed as receptor-rich PDMPs. The pathophysiological consequence of this progressive shear accumulation phenomenon is an associated dyscrasia of remaining platelets - being both reduced in size and less activatable via biochemical means - a tendency to favor bleeding, while concomitantly shed microparticles are highly prothrombotic and increase the tendency for thrombosis in both local and systemic milieu. These mechanisms and observations offer direct clinical utility in allowing measurement and guidance of the net balance of platelet driven events in patients with implanted cardiovascular therapeutic devices.


Asunto(s)
Plaquetas , Trombosis , Humanos , Activación Plaquetaria , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria , Estrés Mecánico
20.
Cell Mol Bioeng ; 14(6): 597-612, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34900013

RESUMEN

INTRODUCTION: Platelet activation by mechanical means such as shear stress exposure, is a vital driver of thrombotic risk in implantable blood-contacting devices used in the treatment of heart failure. Lipids are essential in platelets activation and have been studied following biochemical activation. However, little is known regarding lipid alterations occurring with mechanical shear-mediated platelet activation. METHODS: Here, we determined if shear-activation of platelets induced lipidome changes that differ from those associated with biochemically-mediated platelet activation. We performed high-resolution lipidomic analysis on purified platelets from four healthy human donors. For each donor, we compared the lipidome of platelets that were non-activated or activated by shear, ADP, or thrombin treatment. RESULTS: We found that shear activation altered cell-associated lipids and led to the release of lipids into the extracellular environment. Shear-activated platelets released 21 phospholipids and sphingomyelins at levels statistically higher than platelets activated by biochemical stimulation. CONCLUSIONS: We conclude that shear-mediated activation of platelets alters the basal platelet lipidome. Further, these alterations differ and are unique in comparison to the lipidome of biochemically activated platelets. Many of the released phospholipids contained an arachidonic acid tail or were phosphatidylserine lipids, which have known procoagulant properties. Our findings suggest that lipids released by shear-activated platelets may contribute to altered thrombosis in patients with implanted cardiovascular therapeutic devices. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12195-021-00692-x.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA