RESUMEN
The Trans-Omics for Precision Medicine (TOPMed) programme seeks to elucidate the genetic architecture and biology of heart, lung, blood and sleep disorders, with the ultimate goal of improving diagnosis, treatment and prevention of these diseases. The initial phases of the programme focused on whole-genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here we describe the TOPMed goals and design as well as the available resources and early insights obtained from the sequence data. The resources include a variant browser, a genotype imputation server, and genomic and phenotypic data that are available through dbGaP (Database of Genotypes and Phenotypes)1. In the first 53,831 TOPMed samples, we detected more than 400 million single-nucleotide and insertion or deletion variants after alignment with the reference genome. Additional previously undescribed variants were detected through assembly of unmapped reads and customized analysis in highly variable loci. Among the more than 400 million detected variants, 97% have frequencies of less than 1% and 46% are singletons that are present in only one individual (53% among unrelated individuals). These rare variants provide insights into mutational processes and recent human evolutionary history. The extensive catalogue of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and noncoding sequence variants to phenotypic variation. Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and reach of genome-wide association studies to include variants down to a frequency of approximately 0.01%.
Asunto(s)
Variación Genética/genética , Genoma Humano/genética , Genómica , National Heart, Lung, and Blood Institute (U.S.) , Medicina de Precisión , Citocromo P-450 CYP2D6/genética , Haplotipos/genética , Heterocigoto , Humanos , Mutación INDEL , Mutación con Pérdida de Función , Mutagénesis , Fenotipo , Polimorfismo de Nucleótido Simple , Densidad de Población , Medicina de Precisión/normas , Control de Calidad , Tamaño de la Muestra , Estados Unidos , Secuenciación Completa del Genoma/normasRESUMEN
Neisseria gonorrhoeae (the gonococcus, Gc) causes the sexually transmitted infection gonorrhea. Gc is a prominent threat to human health by causing severe lifelong sequelae, including infertility and chronic pelvic pain, which is amplified by the emergence of "superbug" strains resistant to all current antibiotics. Gc is highly adapted to colonize human mucosal surfaces, where it survives despite initiating a robust inflammatory response and influx of polymorphonuclear leukocytes (PMNs, neutrophils) that typically clear bacteria. Here, dual-species RNA-sequencing was used to define Gc and PMN transcriptional profiles alone and after infection. Core host and bacterial responses were assessed for two strains of Gc and three human donors' PMNs. Comparative analysis of Gc transcripts revealed overlap between Gc responses to PMNs, iron, and hydrogen peroxide; 98 transcripts were differentially expressed across both Gc strains in response to PMN co-culture, including iron-responsive and oxidative stress response genes. We experimentally determined that the iron-dependent TbpB is suppressed by PMN co-culture, and iron-limited Gc have a survival advantage when cultured with PMNs. Analysis of PMN transcripts modulated by Gc infection revealed differential expression of genes driving cell adhesion, migration, inflammatory responses, and inflammation resolution pathways. Production of pro-inflammatory cytokines, including IL1B and IL8, the adhesion factor ICAM1, and prostaglandin PGE2 were induced in PMNs in response to Gc. Together, this study represents a comprehensive and experimentally validated dual-species transcriptomic analysis of two isolates of Gc and primary human PMNs that gives insight into how this bacterium survives innate immune onslaught to cause disease.
Asunto(s)
Gonorrea , Neisseria gonorrhoeae , Neutrófilos , Transcriptoma , Humanos , Neisseria gonorrhoeae/inmunología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Gonorrea/inmunología , Gonorrea/microbiologíaRESUMEN
Mycobacterium tuberculosis (Mtb) possesses five type VII secretion systems (T7SS), virulence determinants that include the secretion apparatus and associated secretion substrates. Mtb strains deleted for the genes encoding substrates of the ESX-3 T7SS, esxG or esxH, require iron supplementation for in vitro growth and are highly attenuated in vivo. In a subset of infected mice, suppressor mutants of esxG or esxH deletions were isolated, which enabled growth to high titers or restored virulence. Suppression was conferred by mechanisms that cause overexpression of an ESX-3 paralogous region that lacks genes for the secretion apparatus but encodes EsxR and EsxS, apparent ESX-3 orphan substrates that functionally compensate for the lack of EsxG or EsxH. The mechanisms include the disruption of a transcriptional repressor and a massive 38- to 60-fold gene amplification. These data identify an iron acquisition regulon, provide insight into T7SS, and reveal a mechanism of Mtb chromosome evolution involving "accordion-type" amplification.
Asunto(s)
Mycobacterium tuberculosis/genética , Sistemas de Secreción Tipo VII/genética , Animales , Sistemas de Secreción Bacterianos/genética , Evolución Biológica , Evolución Molecular , Amplificación de Genes/genética , Ratones , Mycobacterium tuberculosis/metabolismo , Sistemas de Secreción Tipo VII/fisiología , Virulencia , Factores de Virulencia/genéticaRESUMEN
PURPOSE: Despite well-informed work in several malignancies, the phenotypic effects of TP53 mutations in metastatic castration-sensitive prostate cancer (mCSPC) progression and metastasis are not clear. We characterized the structure-function and clinical impact of TP53 mutations in mCSPC. PATIENTS AND METHODS: We performed an international retrospective review of men with mCSPC who underwent next-generation sequencing and were stratified according to TP53 mutational status and metastatic burden. Clinical outcomes included radiographic progression-free survival (rPFS) and overall survival (OS) evaluated with Kaplan-Meier and multivariable Cox regression. We also utilized isogenic cancer cell lines to assess the effect of TP53 mutations and APR-246 treatment on migration, invasion, colony formation in vitro, and tumor growth in vivo. Preclinical experimental observations were compared using t-tests and ANOVA. RESULTS: Dominant-negative (DN) TP53 mutations were enriched in patients with synchronous (vs. metachronous) (20.7% vs. 6.3%, p < 0.01) and polymetastatic (vs. oligometastatic) (14.4% vs. 7.9%, p < 0.01) disease. On multivariable analysis, DN mutations were associated with worse rPFS (hazards ratio [HR] = 1.97, 95% confidence interval [CI]: 1.31-2.98) and overall survival [OS] (HR = 2.05, 95% CI: 1.14-3.68) compared to TP53 wild type (WT). In vitro, 22Rv1 TP53 R175H cells possessed stronger migration, invasion, colony formation ability, and cellular movement pathway enrichment in RNA sequencing analysis compared to 22Rv1 TP53 WT cells. Treatment with APR-246 reversed the effects of TP53 mutations in vitro and inhibited 22Rv1 TP53 R175H tumor growth in vivo in a dosage-dependent manner. CONCLUSIONS: DN TP53 mutations correlated with worse prognosis in prostate cancer patients and higher metastatic potential, which could be counteracted by APR-246 treatment suggesting a potential future therapeutic avenue.
Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Pronóstico , Supervivencia sin Progresión , Mutación , Relación Estructura-Actividad , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Proteína p53 Supresora de Tumor/genéticaRESUMEN
Chronic allograft dysfunction (CAD), characterized histologically by interstitial fibrosis and tubular atrophy, is the major cause of kidney allograft loss. Here, using single nuclei RNA sequencing and transcriptome analysis, we identified the origin, functional heterogeneity, and regulation of fibrosis-forming cells in kidney allografts with CAD. A robust technique was used to isolate individual nuclei from kidney allograft biopsies and successfully profiled 23,980 nuclei from five kidney transplant recipients with CAD and 17,913 nuclei from three patients with normal allograft function. Our analysis revealed two distinct states of fibrosis in CAD; low and high extracellular matrix (ECM) with distinct kidney cell subclusters, immune cell types, and transcriptional profiles. Imaging mass cytometry analysis confirmed increased ECM deposition at the protein level. Proximal tubular cells transitioned to an injured mixed tubular (MT1) phenotype comprised of activated fibroblasts and myofibroblast markers, generated provisional ECM which recruited inflammatory cells, and served as the main driver of fibrosis. MT1 cells in the high ECM state achieved replicative repair evidenced by dedifferentiation and nephrogenic transcriptional signatures. MT1 in the low ECM state showed decreased apoptosis, decreased cycling tubular cells, and severe metabolic dysfunction, limiting the potential for repair. Activated B, T and plasma cells were increased in the high ECM state, while macrophage subtypes were increased in the low ECM state. Intercellular communication between kidney parenchymal cells and donor-derived macrophages, detected several years post-transplantation, played a key role in injury propagation. Thus, our study identified novel molecular targets for interventions aimed to ameliorate or prevent allograft fibrogenesis in kidney transplant recipients.
Asunto(s)
Enfermedades Renales , Trasplante de Riñón , Humanos , Trasplante de Riñón/efectos adversos , Transcriptoma , Aloinjertos/patología , Riñón/patología , Enfermedades Renales/patología , Fibrosis , Perfilación de la Expresión GénicaRESUMEN
Operational tolerance (OT) after kidney transplantation is defined as stable graft acceptance without the need for immunosuppression therapy. However, it is not clear which cellular and molecular pathways are driving tolerance in these patients. In this first-of-its-kind pilot study, we assessed the immune landscape associated with OT using single-cell analyses. Peripheral mononuclear cells from a kidney transplant recipient with OT (Tol), 2 healthy individuals (HC), and a kidney transplant recipient with normal kidney function on standard-of-care immunosuppression (SOC) were evaluated. The immune landscape of the Tol was drastically different from that of SOC and emerged closer to the profile of HC. TCL1A+ naive B cells and LSGAL1+ regulatory T cells (Tregs) were in higher proportions in Tol. We were unable to identify the Treg subcluster in SOC. The ligand-receptor analysis in HC and Tol identified interactions between B cells, and Tregs that enhance the proliferation and suppressive function of Tregs. SOC reported the highest proportion of activated B cells with more cells in the G2M phase. Our single-cell RNA sequencing study identified the mediators of tolerance; however, it emphasizes the requirement of similar investigations on a larger cohort to reaffirm the role of immune cells in tolerance.
Asunto(s)
Trasplante de Riñón , Humanos , Trasplante de Riñón/efectos adversos , Leucocitos Mononucleares , Proyectos Piloto , Rechazo de Injerto/etiología , Tolerancia Inmunológica , Linfocitos T Reguladores , Análisis de Secuencia de ARN , Tolerancia al TrasplanteRESUMEN
To gain a better understanding of the transcriptional response of Aspergillus fumigatus during invasive pulmonary infection, we used a NanoString nCounter to assess the transcript levels of 467 A. fumigatus genes during growth in the lungs of immunosuppressed mice. These genes included ones known to respond to diverse environmental conditions and those encoding most transcription factors in the A. fumigatus genome. We found that invasive growth in vivo induces a unique transcriptional profile as the organism responds to nutrient limitation and attack by host phagocytes. This in vivo transcriptional response is largely mimicked by in vitro growth in Aspergillus minimal medium that is deficient in nitrogen, iron, and/or zinc. From the transcriptional profiling data, we selected 9 transcription factor genes that were either highly expressed or strongly up-regulated during in vivo growth. Deletion mutants were constructed for each of these genes and assessed for virulence in mice. Two transcription factor genes were found to be required for maximal virulence. One was rlmA, which is required for the organism to achieve maximal fungal burden in the lung. The other was sltA, which regulates of the expression of multiple secondary metabolite gene clusters and mycotoxin genes independently of laeA. Using deletion and overexpression mutants, we determined that the attenuated virulence of the ΔsltA mutant is due in part to decreased expression aspf1, which specifies a ribotoxin, but is not mediated by reduced expression of the fumigaclavine gene cluster or the fumagillin-pseruotin supercluster. Thus, in vivo transcriptional profiling focused on transcription factors genes provides a facile approach to identifying novel virulence regulators.
Asunto(s)
Aspergillus fumigatus/genética , Regulación Fúngica de la Expresión Génica/genética , Pulmón/virología , Factores de Transcripción/metabolismo , Animales , Aspergilosis/microbiología , Aspergillus fumigatus/patogenicidad , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica/métodos , Hierro/metabolismo , Pulmón/metabolismo , Ratones , Virulencia/genéticaRESUMEN
Soil-transmitted nematodes (STNs) place a tremendous burden on health and economics worldwide with an estimate of at least 1.5 billion people, or 24% of the population, being infected with at least 1 STN globally. Children and pregnant women carry the heavier pathological burden, and disease caused by the blood-feeding worm in the intestine can result in anaemia and delays in physical and intellectual development. These parasites are capable of infecting and reproducing in various host species, but what determines host specificity remains unanswered. Identifying the molecular determinants of host specificity would provide a crucial breakthrough towards understanding the biology of parasitism and could provide attractive targets for intervention. To investigate specificity mechanisms, members of the hookworm genus Ancylostoma provide a powerful system as they range from strict specialists to generalists. Using transcriptomics, differentially expressed genes (DEGs) in permissive (hamster) and non-permissive (mouse) hosts at different early time points during infection with A. ceylanicum were examined. Analysis of the data has identified unique immune responses in mice, as well as potential permissive signals in hamsters. Specifically, immune pathways associated with resistance to infection are upregulated in the non-permissive host, providing a possible protection mechanism that is absent in the permissive host. Furthermore, unique signatures of host specificity that may inform the parasite that it has invaded a permissive host were identified. These data provide novel insight into the tissue-specific gene expression differences between permissive and non-permissive hosts in response to hookworm infection.
Asunto(s)
Anquilostomiasis , Infecciones por Uncinaria , Embarazo , Cricetinae , Femenino , Animales , Humanos , Ratones , Ancylostoma/genética , Anquilostomiasis/parasitología , Especificidad del Huésped , Transcriptoma , IntestinosRESUMEN
Archaeological studies estimate the initial settlement of Samoa at 2,750 to 2,880 y ago and identify only limited settlement and human modification to the landscape until about 1,000 to 1,500 y ago. At this point, a complex history of migration is thought to have begun with the arrival of people sharing ancestry with Near Oceanic groups (i.e., Austronesian-speaking and Papuan-speaking groups), and was then followed by the arrival of non-Oceanic groups during European colonialism. However, the specifics of this peopling are not entirely clear from the archaeological and anthropological records, and is therefore a focus of continued debate. To shed additional light on the Samoan population history that this peopling reflects, we employ a population genetic approach to analyze 1,197 Samoan high-coverage whole genomes. We identify population splits between the major Samoan islands and detect asymmetrical gene flow to the capital city. We also find an extreme bottleneck until about 1,000 y ago, which is followed by distinct expansions across the islands and subsequent bottlenecks consistent with European colonization. These results provide for an increased understanding of Samoan population history and the dynamics that inform it, and also demonstrate how rapid demographic processes can shape modern genomes.
Asunto(s)
Evolución Biológica , Nativos de Hawái y Otras Islas del Pacífico/genética , Arqueología , Demografía , Humanos , Samoa , Factores de TiempoRESUMEN
Native Americans from the Amazon, Andes, and coastal geographic regions of South America have a rich cultural heritage but are genetically understudied, therefore leading to gaps in our knowledge of their genomic architecture and demographic history. In this study, we sequence 150 genomes to high coverage combined with an additional 130 genotype array samples from Native American and mestizo populations in Peru. The majority of our samples possess greater than 90% Native American ancestry, which makes this the most extensive Native American sequencing project to date. Demographic modeling reveals that the peopling of Peru began â¼12,000 y ago, consistent with the hypothesis of the rapid peopling of the Americas and Peruvian archeological data. We find that the Native American populations possess distinct ancestral divisions, whereas the mestizo groups were admixtures of multiple Native American communities that occurred before and during the Inca Empire and Spanish rule. In addition, the mestizo communities also show Spanish introgression largely following Peruvian Independence, nearly 300 y after Spain conquered Peru. Further, we estimate migration events between Peruvian populations from all three geographic regions with the majority of between-region migration moving from the high Andes to the low-altitude Amazon and coast. As such, we present a detailed model of the evolutionary dynamics which impacted the genomes of modern-day Peruvians and a Native American ancestry dataset that will serve as a beneficial resource to addressing the underrepresentation of Native American ancestry in sequencing studies.
Asunto(s)
Indígenas Sudamericanos/genética , Modelos Genéticos , Dinámica Poblacional , Historia Antigua , Humanos , Indígenas Sudamericanos/historia , PerúRESUMEN
Bacterial pathogens subvert host cells by manipulating cellular pathways for survival and replication; in turn, host cells respond to the invading pathogen through cascading changes in gene expression. Deciphering these complex temporal and spatial dynamics to identify novel bacterial virulence factors or host response pathways is crucial for improved diagnostics and therapeutics. Dual RNA sequencing (dRNA-Seq) has recently been developed to simultaneously capture host and bacterial transcriptomes from an infected cell. This approach builds on the high sensitivity and resolution of RNA sequencing technology and is applicable to any bacteria that interact with eukaryotic cells, encompassing parasitic, commensal or mutualistic lifestyles. Several laboratory protocols have been presented that outline the collection, extraction and sequencing of total RNA for dRNA-Seq experiments, but there is relatively little guidance available for the detailed bioinformatic analyses required. This protocol outlines a typical dRNA-Seq experiment, based on a Chlamydia trachomatis-infected host cell, with a detailed description of the necessary bioinformatic analyses with currently available software tools.
Asunto(s)
Chlamydia trachomatis/genética , Biología Computacional , Interacciones Huésped-Patógeno , ARN Bacteriano/genética , Análisis de Secuencia de ARN/métodos , Células Epiteliales/microbiología , Regulación Bacteriana de la Expresión Génica , Programas Informáticos , TranscriptomaRESUMEN
BACKGROUND: Understanding the genetic structure of natural populations provides insight into the demographic and adaptive processes that have affected those populations. Such information, particularly when integrated with geospatial data, can have translational applications for a variety of fields, including public health. Estimated effective migration surfaces (EEMS) is an approach that allows visualization of the spatial patterns in genomic data to understand population structure and migration. In this study, we developed a workflow to optimize the resolution of spatial grids used to generate EEMS migration maps and applied this optimized workflow to estimate migration of Plasmodium falciparum in Cambodia and bordering regions of Thailand and Vietnam. METHODS: The optimal density of EEMS grids was determined based on a new workflow created using density clustering to define genomic clusters and the spatial distance between genomic clusters. Topological skeletons were used to capture the spatial distribution for each genomic cluster and to determine the EEMS grid density; i.e., both genomic and spatial clustering were used to guide the optimization of EEMS grids. Model accuracy for migration estimates using the optimized workflow was tested and compared to grid resolutions selected without the optimized workflow. As a test case, the optimized workflow was applied to genomic data generated from P. falciparum sampled in Cambodia and bordering regions, and migration maps were compared to estimates of malaria endemicity, as well as geographic properties of the study area, as a means of validating observed migration patterns. RESULTS: Optimized grids displayed both high model accuracy and reduced computing time compared to grid densities selected in an unguided manner. In addition, EEMS migration maps generated for P. falciparum using the optimized grid corresponded to estimates of malaria endemicity and geographic properties of the study region that might be expected to impact malaria parasite migration, supporting the validity of the observed migration patterns. CONCLUSIONS: Optimized grids reduce spatial uncertainty in the EEMS contours that can result from user-defined parameters, such as the resolution of the spatial grid used in the model. This workflow will be useful to a broad range of EEMS users as it can be applied to analyses involving other organisms of interest and geographic areas.
Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Análisis Espacial , Animales , Cambodia/epidemiología , Análisis por Conglomerados , Sistemas de Información Geográfica , Humanos , Malaria Falciparum/epidemiología , Tailandia/epidemiologíaRESUMEN
For over 130 years, invasive pneumococcal disease has been associated with the presence of extracellular planktonic pneumococci, i.e. diplococci or short chains in affected tissues. Herein, we show that Streptococcus pneumoniae that invade the myocardium instead replicate within cellular vesicles and transition into non-purulent biofilms. Pneumococci within mature cardiac microlesions exhibited salient biofilm features including intrinsic resistance to antibiotic killing and the presence of an extracellular matrix. Dual RNA-seq and subsequent principal component analyses of heart- and blood-isolated pneumococci confirmed the biofilm phenotype in vivo and revealed stark anatomical site-specific differences in virulence gene expression; the latter having major implications on future vaccine antigen selection. Our RNA-seq approach also identified three genomic islands as exclusively expressed in vivo. Deletion of one such island, Region of Diversity 12, resulted in a biofilm-deficient and highly inflammogenic phenotype within the heart; indicating a possible link between the biofilm phenotype and a dampened host-response. We subsequently determined that biofilm pneumococci released greater amounts of the toxin pneumolysin than did planktonic or RD12 deficient pneumococci. This allowed heart-invaded wildtype pneumococci to kill resident cardiac macrophages and subsequently subvert cytokine/chemokine production and neutrophil infiltration into the myocardium. This is the first report for pneumococcal biofilm formation in an invasive disease setting. We show that biofilm pneumococci actively suppress the host response through pneumolysin-mediated immune cell killing. As such, our findings contradict the emerging notion that biofilm pneumococci are passively immunoquiescent.
Asunto(s)
Biopelículas , Macrófagos/inmunología , Miocarditis/inmunología , Miocarditis/microbiología , Infecciones Neumocócicas/inmunología , Transcriptoma , Animales , Western Blotting , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Ratones , Ratones Endogámicos BALB C , Microscopía Electrónica de Transmisión , Infecciones Neumocócicas/genética , Análisis de Componente Principal , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/inmunología , Virulencia/genética , Virulencia/inmunologíaRESUMEN
Although NME1 is well known for its ability to suppress metastasis of melanoma, the molecular mechanisms underlying this activity are not completely understood. Herein, we utilized a bioinformatics approach to systematically identify genes whose expression is correlated with the metastasis suppressor function of NME1. This was accomplished through a search for genes that were regulated by NME1, but not by NME1 variants lacking metastasis suppressor activity. This approach identified a number of novel genes, such as ALDOC, CXCL11, LRP1b, and XAGE1 as well as known targets such as NETO2, which were collectively designated as an NME1-Regulated Metastasis Suppressor Signature (MSS). The MSS was associated with prolonged overall survival in a large cohort of melanoma patients in The Cancer Genome Atlas (TCGA). The median overall survival of melanoma patients with elevated expression of the MSS genes was >5.6 years longer compared with that of patients with lower expression of the MSS genes. These data demonstrate that NMEl represents a powerful tool for identifying genes whose expression is associated with metastasis and survival of melanoma patients, suggesting their potential applications as prognostic markers and therapeutic targets in advanced forms of this lethal cancer.
Asunto(s)
Regulación Neoplásica de la Expresión Génica , Melanoma/metabolismo , Nucleósido Difosfato Quinasas NM23/metabolismo , Animales , Antígenos de Neoplasias/genética , Línea Celular Tumoral , Quimiocina CXCL11/genética , Biología Computacional , Femenino , Fructosa-Bifosfato Aldolasa/genética , Humanos , Melanoma/mortalidad , Ratones Desnudos , Nucleósido Difosfato Quinasas NM23/genética , Metástasis de la Neoplasia , Mutación Puntual , Receptores de LDL/genéticaRESUMEN
Candida albicans, the major invasive fungal pathogen of humans, can cause both debilitating mucosal infections and fatal invasive infections. Understanding the complex nature of the host-pathogen interaction in each of these contexts is essential to developing desperately needed therapies to treat fungal infections. RNA-seq enables a systems-level understanding of infection by facilitating comprehensive analysis of transcriptomes from multiple species (e.g., host and pathogen) simultaneously. We used RNA-seq to characterize the transcriptomes of both C. albicans and human endothelial cells or oral epithelial cells during in vitro infection. Network analysis of the differentially expressed genes identified the activation of several signaling pathways that have not previously been associated with the host response to fungal pathogens. Using an siRNA knockdown approach, we demonstrate that two of these pathways-platelet-derived growth factor BB (PDGF BB) and neural precursor-cell-expressed developmentally down-regulated protein 9 (NEDD9)-govern the host-pathogen interaction by regulating the uptake of C. albicans by host cells. Using RNA-seq analysis of a mouse model of hematogenously disseminated candidiasis (HDC) and episodes of vulvovaginal candidiasis (VVC) in humans, we found evidence that many of the same signaling pathways are activated during mucosal (VVC) and/or disseminated (HDC) infections in vivo. Our analyses have uncovered several signaling pathways at the interface between C. albicans and host cells in various contexts of infection, and suggest that PDGF BB and NEDD9 play important roles in this interaction. In addition, these data provide a valuable community resource for better understanding host-fungal pathogen interactions.
Asunto(s)
Candidiasis/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Becaplermina , Candida albicans/patogenicidad , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/microbiología , Humanos , Ratones , Ratones Endogámicos BALB C , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogénicas c-sis/genética , Proteínas Proto-Oncogénicas c-sis/metabolismo , TranscriptomaRESUMEN
Background: Amplified copy number in the plasmepsin II/III genes within Plasmodium falciparum has been associated with decreased sensitivity to piperaquine. To examine this association and test whether additional loci might also contribute, we performed a genome-wide association study of ex vivo P. falciparum susceptibility to piperaquine. Methods: Plasmodium falciparum DNA from 183 samples collected primarily from Cambodia was genotyped at 33716 genome-wide single nucleotide polymorphisms (SNPs). Linear mixed models and random forests were used to estimate associations between parasite genotypes and piperaquine susceptibility. Candidate polymorphisms were evaluated for their association with dihydroartemisinin-piperaquine treatment outcomes in an independent dataset. Results: Single nucleotide polymorphisms on multiple chromosomes were associated with piperaquine 90% inhibitory concentrations (IC90) in a genome-wide analysis. Fine-mapping of genomic regions implicated in genome-wide analyses identified multiple SNPs in linkage disequilibrium with each other that were significantly associated with piperaquine IC90, including a novel mutation within the gene encoding the P. falciparum chloroquine resistance transporter, PfCRT. This mutation (F145I) was associated with dihydroartemisinin-piperaquine treatment failure after adjusting for the presence of amplified plasmepsin II/III, which was also associated with decreased piperaquine sensitivity. Conclusions: Our data suggest that, in addition to plasmepsin II/III copy number, other loci, including pfcrt, may also be involved in piperaquine resistance.
Asunto(s)
Resistencia a Medicamentos/genética , Proteínas de Transporte de Membrana/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Quinolinas/farmacología , Artemisininas/farmacología , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Cambodia , Variaciones en el Número de Copia de ADN , ADN Protozoario/genética , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Técnicas de Genotipaje , Humanos , Concentración 50 Inhibidora , Desequilibrio de Ligamiento , Proteínas de Transporte de Membrana/metabolismo , Mutación , Plasmodium falciparum/efectos de los fármacos , Polimorfismo de Nucleótido Simple , Modelos de Riesgos Proporcionales , Proteínas Protozoarias/metabolismo , Sensibilidad y Especificidad , Insuficiencia del TratamientoRESUMEN
Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy characterized by disrupted blood cell production and function. Recent investigations have highlighted the potential of targeting glutamine metabolism as a promising therapeutic approach for AML. Asparaginases, enzymes that deplete circulating glutamine and asparagine, are approved for the treatment of acute lymphoblastic leukemia, but are also under investigation in AML, with promising results. We previously reported an elevation in plasma serine levels following treatment with Erwinia-derived asparaginase (also called crisantaspase). This led us to hypothesize that AML cells initiate the de novo serine biosynthesis pathway in response to crisantaspase treatment and that inhibiting this pathway in combination with crisantaspase would enhance AML cell death. Here we report that in AML cell lines, treatment with the clinically available crisantaspase, Rylaze, upregulates the serine biosynthesis enzymes phosphoglycerate dehydrogenase (PHGDH) and phosphoserine aminotransferase (PSAT1) through activation of the Amino Acid Response (AAR) pathway, a cellular stress response mechanism that regulates amino acid metabolism and protein synthesis under conditions of nutrient limitation. Inhibition of serine biosynthesis through CRISPR-Cas9-mediated knockout of PHGDH resulted in a ~250-fold reduction in the half-maximal inhibitory concentration (IC50) for Rylaze, indicating heightened sensitivity to crisantaspase therapy. Treatment of AML cells with a combination of Rylaze and a small molecule inhibitor of PHGDH (BI4916) revealed synergistic anti-proliferative effects in both cell lines and primary AML patient samples. Rylaze-BI4916 treatment in AML cell lines led to the inhibition of cap-dependent mRNA translation and protein synthesis, as well as a marked decrease in intracellular glutathione levels, a critical cellular antioxidant. Collectively, our results highlight the clinical potential of targeting serine biosynthesis in combination with crisantaspase as a novel therapeutic strategy for AML.
RESUMEN
During pulmonary mucormycosis, inhaled sporangiospores adhere to, germinate, and invade airway epithelial cells to establish infection. We provide evidence that HIF1α plays dual roles in airway epithelial cells during Mucorales infection. We observed an increase in HIF1α protein accumulation and increased expression of many known HIF1α-responsive genes during in vitro infection, indicating that HIF1α signaling is activated by Mucorales infection. Inhibition of HIF1α signaling led to a substantial decrease in the ability of R. delemar to invade cultured airway epithelial cells. Transcriptome analysis revealed that R. delemar infection induces the expression of many pro-inflammatory genes whose expression was significantly reduced by HIF1α inhibition. Importantly, pharmacological inhibition of HIF1α increased survival in a mouse model of pulmonary mucormycosis without reducing fungal burden. These results suggest that HIF1α plays two opposing roles during mucormycosis: one that facilitates the ability of Mucorales to invade the host cells and one that facilitates the ability of the host to mount an innate immune response.
Asunto(s)
Células Epiteliales , Subunidad alfa del Factor 1 Inducible por Hipoxia , Mucorales , Mucormicosis , Animales , Femenino , Humanos , Ratones , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Perfilación de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Pulmón/microbiología , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Ratones Endogámicos C57BL , Mucorales/metabolismo , Mucorales/genética , Mucormicosis/microbiología , Mucormicosis/metabolismo , Mucormicosis/inmunología , Transducción de SeñalRESUMEN
BACKGROUND: Standard of care management for synchronous metastatic castration-sensitive prostate cancer (mCSPC) includes androgen deprivation therapy with a second-generation antiandrogen therapy and/or docetaxel. Recently, randomized data have demonstrated that prostate-directed therapy (PDT) is associated with an improvement in overall survival (OS) among patients with low-volume metastatic disease. Tumor genomics represents an additional dimension to define the clinical trajectory of patients with mCSPC. OBJECTIVE: To evaluate a high-risk (HiRi) genomic signature to predict the benefit from PDT. DESIGN, SETTING, AND PARTICIPANTS: We performed a single-institution retrospective review of men with synchronous low-volume mCSPC who underwent DNA panel sequencing of their tumor. Patients were classified according to the presence of HiRi mutation including pathogenic mutations in TP53, ATM, BRCA1, BRCA2, or Rb1. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The primary endpoint was to determine the effect of PDT on OS in patients with and without a HiRi mutation. A survival analysis was performed with the Kaplan-Meier method compared with log-rank test and multivariable Cox regression. The interaction between HiRi mutation and PDT was evaluated. RESULTS AND LIMITATIONS: A total of 101 patients with synchronous low-volume CSPC were included with a median follow-up of 44 mo. Approximately half of patients were found to have a HiRi pathogenic mutation (49%). Patients with HiRi mutations demonstrated median OS of 73 versus 66.8 mo (p = 0.3) for no PDT versus PDT. Conversely, patients without a HiRi mutation demonstrated a significant improvement in OS of 60 versus 105.3 mo (p < 0.001) for no PDT versus PDT. The p value for interaction for OS between PDT and HiRi mutation was statistically significant (p < 0.001). Limitations include the retrospective nature of the study. CONCLUSIONS: Here, we have identified a HiRi genomic biomarker that appears predictive for the lack of benefit from PDT in men with synchronous low-volume mCSPC. Further work validating these results is warranted. PATIENT SUMMARY: In this report, we evaluated a high-risk genomic biomarker to predict the benefit from prostate-directed therapy for men with synchronous low-volume metastatic castration-sensitive prostate cancer. We found that men without a high-risk mutation appear to experience a greater clinical benefit from prostate-directed therapy than those with a high-risk mutation.
Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Próstata/cirugía , Próstata/patología , Antagonistas de Andrógenos/uso terapéutico , Estudios Retrospectivos , Biomarcadores de Tumor/genética , CastraciónRESUMEN
The molecular mechanisms underlying age-related declines in learning and long-term memory are still not fully understood. To address this gap, our study focused on investigating the transcriptional landscape of a singularly identified motor neuron L7 in Aplysia, which is pivotal in a specific type of nonassociative learning known as sensitization of the siphon-withdraw reflex. Employing total RNAseq analysis on a single isolated L7 motor neuron after short-term or long-term sensitization (LTS) training of Aplysia at 8, 10, and 12 months (representing mature, late mature, and senescent stages), we uncovered aberrant changes in transcriptional plasticity during the aging process. Our findings specifically highlight changes in the expression of messenger RNAs (mRNAs) that encode transcription factors, translation regulators, RNA methylation participants, and contributors to cytoskeletal rearrangements during learning and long noncoding RNAs (lncRNAs). Furthermore, our comparative gene expression analysis identified distinct transcriptional alterations in two other neurons, namely the motor neuron L11 and the giant cholinergic neuron R2, whose roles in LTS are not yet fully elucidated. Taken together, our analyses underscore cell type-specific impairments in the expression of key components related to learning and memory within the transcriptome as organisms age, shedding light on the complex molecular mechanisms driving cognitive decline during aging.