Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 26(13)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34279383

RESUMEN

Silver has a long history of antibacterial effectiveness. The combination of atomically precise metal nanoclusters with the field of nucleic acid nanotechnology has given rise to DNA-templated silver nanoclusters (DNA-AgNCs) which can be engineered with reproducible and unique fluorescent properties and antibacterial activity. Furthermore, cytosine-rich single-stranded DNA oligonucleotides designed to fold into hairpin structures improve the stability of AgNCs and additionally modulate their antibacterial properties and the quality of observed fluorescent signals. In this work, we characterize the sequence-specific fluorescence and composition of four representative DNA-AgNCs, compare their corresponding antibacterial effectiveness at different pH, and assess cytotoxicity to several mammalian cell lines.


Asunto(s)
Antibacterianos/química , ADN de Cadena Simple/química , Nanopartículas del Metal/química , Plata/química , Antibacterianos/farmacología , Supervivencia Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Fluorescencia , Humanos , Nanopartículas del Metal/toxicidad , Células THP-1
2.
J Phys Chem A ; 117(7): 1483-91, 2013 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-23330803

RESUMEN

The family of magnetoactive compounds Cu(hfac)(2)L(R) exhibits thermo- and photoswitching phenomena promising for various applications. Photoswitching of the Cu(hfac)(2)L(Pr) compound can be observed at temperatures below 20 K and is accompanied by transition to metastable structural state. Reverse conversion to stable structure could not be induced by light of near-IR-vis-UV regions up to date. The far-IR spectra of metastable and stable structural states are different and show characteristic absorption lines in the range of 170-240 cm(-1). These frequencies are accessible by NovoFEL - high-power THz free-electron laser user facility in Novosibirsk. We investigate selective influence of THz radiation on relaxation processes from metastable to stable structural state, which can be monitored by electron paramagnetic resonance (EPR). For this purpose, the experimental station based on X-band EPR spectrometer has been constructed by the THz beamline of NovoFEL and equipped with multimodal THz waveguide allowing to fed radiation directly into the EPR resonator. It has been found that irradiation of studied compound with high-power THz light causes significant but nondestructive increase of its temperature. Apart from this effect, no resonant influence of THz irradiation on relaxation processes has been observed. The experimental results have been rationalized taking into account vibrational relaxation times of the studied compound. Further experiments based on pulse heating by THz radiation have been proposed.

3.
Eur J Med Chem ; 215: 113212, 2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33582576

RESUMEN

The emergence of drug-resistant strains of pathogenic microorganisms necessitates the creation of new drugs. In order to find new compounds that effectively inhibit the growth of pathogenic bacteria and fungi, we synthesized a set of N4-derivatives of cytidine, 2'-deoxycytidine and 5-metyl-2'-deoxycytidine bearing extended N4-alkyl and N4-phenylalkyl groups. The derivatives demonstrate activity against a number of Gram-positive bacteria, including Mycobacterium smegmatis (MIC = 24-200 µM) and Staphylococcus aureus (MIC = 50-200 µM), comparable with the activities of some antibiotics in medical use. The most promising compound appeared to be N4-dodecyl-5-metyl-2'-deoxycytidine 4h with activities of 24 and 48 µM against M. smegmatis and S. aureus, respectively, and high inhibitory activity of 0.5 mM against filamentous fungi that can, among other things, damage works of art, such as tempera painting. Noteworthy, some of other synthesized compounds are active against fungal growth with the inhibitory concentration in the range of 0.5-3 mM.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Citidina/análogos & derivados , Citidina/farmacología , Células A549 , Animales , Antibacterianos/síntesis química , Antibacterianos/toxicidad , Antifúngicos/síntesis química , Antifúngicos/toxicidad , Bacterias/efectos de los fármacos , Citidina/toxicidad , Descubrimiento de Drogas , Hongos/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana
4.
Nanomaterials (Basel) ; 9(4)2019 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-31013933

RESUMEN

Besides being a passive carrier of genetic information, DNA can also serve as an architecture template for the synthesis of novel fluorescent nanomaterials that are arranged in a highly organized network of functional entities such as fluorescent silver nanoclusters (AgNCs). Only a few atoms in size, the properties of AgNCs can be tuned using a variety of templating DNA sequences, overhangs, and neighboring duplex regions. In this study, we explore the properties of AgNCs manufactured on a short DNA sequence-an individual element designed for a construction of a larger DNA-based functional assembly. The effects of close proximity of the double-stranded DNA, the directionality of templating single-stranded sequence, and conformational heterogeneity of the template are presented. We observe differences between designs containing the same AgNC templating sequence-twelve consecutive cytosines, (dC)12. AgNCs synthesized on a single "basic" templating element, (dC)12, emit in "red". The addition of double-stranded DNA core, required for the larger assemblies, changes optical properties of the silver nanoclusters by adding a new population of clusters emitting in "green". A new population of "blue" emitting clusters forms only when ssDNA templating sequence is placed on the 5' end of the double-stranded core. We also compare properties of silver nanoclusters, which were incorporated into a dimeric structure-a first step towards a larger assembly.

5.
Materials (Basel) ; 12(19)2019 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-31547101

RESUMEN

The Novosibirsk Free Electron Laser (NovoFEL) facility is able to produce high-power tunable terahertz (THz) laser radiation in quasi-continuous mode. The ability to control/shape this THz radiation is required in a number of user experiments. In this work we propose a modulation approach suitable for free electron lasers based on recuperation design. It allows for generating THz macropulses of a desirable length, down to several microseconds (limited by a quality factor of FEL optical resonator). Using this approach, macropulses in the time window from several microseconds to several hundred microseconds have been shown for three possible frequency ranges: mid-infrared (~1100 cm-1), far-infrared (~200 cm-1) and THz (~40 cm-1). In each case, the observed rise and decay of the macropulse have been measured and interpreted. The advantage of using short macropulses at the maximum peak power available has been demonstrated with the time-resolved Electron Paramagnetic Resonance (EPR) spectroscopy.

6.
Methods Protoc ; 1(3)2018 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-31164573

RESUMEN

We propose an improved method for detecting mutations that arise in DNA due to misincorporations of deoxyadenosine-5'-monophosphate (dAMP) opposite 7,8-dihydro-8-oxoguanine (8-oxoG). The method is based on the synthesis of complementary chains ("mirror" products) using a template containing 8-oxoG. The misincorporation of dAMP in the "mirror" product forms EcoRI sites. The restriction analysis of double-stranded DNAs obtained by PCR of "mirror" product allows quantification of the mutagenesis frequency. In addition, single-strand conformational polymorphism (SSCP) analysis of the single-stranded "mirror" products shows that different DNA polymerases only incorporate dA or dC opposite 8-oxoG. The proposed approach used in developing this technique can be applied in the study of other lesions as well, both single and clustered.

7.
J Magn Reson ; 288: 11-22, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29360045

RESUMEN

Electron Paramagnetic Resonance (EPR) station at the Novosibirsk Free Electron Laser (NovoFEL) user facility is described. It is based on X-band (∼9 GHz) EPR spectrometer and operates in both Continuous Wave (CW) and Time-Resolved (TR) modes, each allowing detection of either direct or indirect influence of high-power NovoFEL light (THz and mid-IR) on the spin system under study. The optics components including two parabolic mirrors, shutters, optical chopper and multimodal waveguide allow the light of NovoFEL to be directly fed into the EPR resonator. Characteristics of the NovoFEL radiation, the transmission and polarization-retaining properties of the waveguide used in EPR experiments are presented. The types of proposed experiments accessible using this setup are sketched. In most practical cases the high-power radiation applied to the sample induces its rapid temperature increase (T-jump), which is best visible in TR mode. Although such influence is a by-product of THz radiation, this thermal effect is controllable and can deliberately be used to induce and measure transient signals of arbitrary samples. The advantage of tunable THz radiation is the absence of photo-induced processes in the sample and its high penetration ability, allowing fast heating of a large portion of virtually any sample and inducing intense transients. Such T-jump TR EPR spectroscopy with THz pulses has been previewed for the two test samples, being a useful supplement for the main goals of the created setup.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA