Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(15)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35957332

RESUMEN

Noise in mode-locked lasers has been a central issue for dual-comb metrological applications. In this work, we investigate the laser intensity noise on dual-comb absolute ranging precision. Two different dual-comb schemes based on linear optical sampling (LOS) and nonlinear asynchronous optical sampling (ASOPS) have been constructed. In the LOS scheme, the ranging precision deteriorates with the increase in laser relative intensity noise (RIN). This effect can be corrected by implementing a balanced photo-detection (BPD). In the ASOPS scheme, the experiment shows that the conversion from laser RIN to dual-comb ranging precision is negligible, making a balanced detection unnecessary for ranging precision improvement. The different manners of RIN's impact on absolute ranging precision are attributed to the distinct cross-correlation signal patterns and the underlying time-of-flight (TOF) extraction algorithms.

2.
Opt Express ; 27(6): 8808-8818, 2019 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-31052693

RESUMEN

We demonstrate a practical method that is used to generate on-demand first- and higher-order cylindrical vector beams, in the 1550 nm band, directly from an all polarization maintaining mode-locked Er-fiber laser. On demand typical 1st order CVBs, including the radially and azimuthally polarized beams, can be easily achieved by properly adjusting the angle of a half-wave plate with respect to the fast axis of the vortex wave plate. The spatial beam mode can be flexibly switched with no disturbance on the time domain mode-locking output. The laser outputs the desired vector beams at 1571 nm with a spectral bandwidth at full-width at half-maximum of 32 nm. The mode-locked laser pulses have a repetition rate of 74.9 MHz. Moreover, the proposed method can be easily extended to create higher-order CVBs. Our research provides a convenient way to generate ultrafast pulses in highly flexible-controlled structured modes, which is essential for optical fabrication and light trapping applications.

3.
Opt Express ; 26(22): 28302-28311, 2018 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-30470004

RESUMEN

We demonstrate an all polarization-maintaining (PM) fiber based dual-wavelength mode-locked Er-fiber laser. A nonlinear amplifying loop mirror (NALM) with an intracavity nonreciprocal phase shifter is used for self-started mode-locking. A short segment of PM fiber is angle-spliced to the NALM, functioning as a PM Sagnac loop filter, thus enabling dual-wavelength mode-locking. The wavelength separation is solely determined by the angle-spliced PM fiber length. Stable dual-wavelength mode-locking operation is switchable between 1570/1581 nm and 1581/1594 nm. The two-color pulse trains oscillating in the same cavity have an inherent offset repetition rate of ~1 kHz owing to cavity dispersion, allowing future high precision dual-comb applications with a simple and robust configuration.

4.
Opt Express ; 26(8): 11046-11054, 2018 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-29716032

RESUMEN

We demonstrate dual-comb spectroscopy in the vicinity of 2 µm wavelength based on a single dual-wavelength dual-comb Thulium-doped fiber laser. The shared laser cavity ensures passively maintained mutual coherence between the two combs due to common mode environmental noise rejection. In a proof-of-principle experiment, the absorption characteristics caused by the water in the optical path that composes the dual-comb spectrometer are measured. The retrieved spectral positions of the water absorption dips match with the HITRAN database.

5.
Opt Lett ; 43(7): 1623-1626, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29601046

RESUMEN

In this work, we study the timing instability of a scalar twin-pulse soliton molecule generated by a passively mode-locked Er-fiber laser. Subfemtosecond precision relative timing jitter characterization between the two solitons composing the molecule is enabled by the balanced optical cross-correlation (BOC) method. Jitter spectral density reveals a short-term (on the microsecond to millisecond timescale) random fluctuation of the pulse separation even in the robust stationary soliton molecules. The root-mean-square (rms) timing jitter is on the order of femtoseconds depending on the pulse separation and the mode-locking regime. The lowest rms timing jitter is 0.83 fs, which is observed in the dispersion managed mode-locking regime. Moreover, the BOC method has proved to be capable of resolving the soliton interaction dynamics in various vibrating soliton molecules.

6.
Opt Lett ; 43(12): 2848-2851, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29905705

RESUMEN

The generation of high-power ultrashort pulses from a passively mode-locked fiber laser is reported based on the combination of a single-polarization large-mode-area (LMA) photonic crystal fiber with a nonlinear amplifying loop mirror design. The introduction of a non-reciprocal phase shift in the loop mirror enables self-starting of the mode-locked laser, while the polarizing LMA fiber supports environmentally stable high-power operation. Mode locking in the soliton-like, stretched-pulse, and all-normal-dispersion regime is characterized. The laser generates stable pulses with up to 2 W average power at a 72 MHz repetition rate, corresponding to a single-pulse energy of 28 nJ. The output pulses are dechirped to a near transform-limited duration of 152 fs. The proposed fiber oscillator presents an alternative approach to high-power ultrafast laser sources, along with environmental stability.

7.
Opt Lett ; 43(22): 5579-5582, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30439899

RESUMEN

A high repetition-rate, few-cycle light pulse is of great importance due to its potential for a variety of applications, including two-dimensional infrared spectroscopy and time-resolved imaging of molecular structures, which benefit from its ultrabroadband spectrum and ultrashort pulse duration. The generation of an ultrabroadband coherent spectrum is one of the frontiers of ultrafast optics, and accessing such few-cycle pulses is presently under active exploration. Here, we demonstrate a simple yet effective pulse synthesizer. It is based on two continuous-wave (cw) injection-seeded high-repetition-rate optical parametric amplification systems and the following self-phase-modulation dominated spectra-broadening processes. The combined spectrum spans from 1250 to 1670 nm, and a near Fourier-transform-limited 3.9-cycle (19.2 fs) synthesized pulse with a central wavelength of 1470 nm is obtained accordingly.

8.
Opt Express ; 25(1): 10-19, 2017 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-28085796

RESUMEN

We demonstrate a novel time domain timing jitter characterization method for ultra-low noise mode-locked lasers. An asynchronous optical sampling (ASOPS) technique is employed, allowing timing jitter statistics on a magnified timescale. As a result, sub femtosecond period jitter of an optical pulse train can be readily accessible to slow detectors and electronics (~100 MHz). The concept is applied to determine the quantum-limited timing jitter for a passively mode-locked Er-fiber laser. Period jitter histogram is acquired following an eye diagram analysis routinely used in electronics. The identified diffusion constant for pulse timing agrees well with analytical solution of perturbed master equation.

9.
Opt Express ; 23(11): 14057-69, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26072775

RESUMEN

The cross correlation between a pair of femtosecond lasers with slightly different repetition rates enables high precision, high update rate time-of-flight (TOF) distance measurements against multiple targets. Here, we investigate the obtainable ranging precision set by the timing jitter from femtosecond lasers. An analytical model governing dual femtosecond laser TOF distance measurement in the presence of pulse train timing jitter is built at first. A numerical study is conducted by involving typical timing jitter sources in femtosecond lasers in the following. Finally, the analytical and numerical models are verified by a TOF ranging experiment using a pair of free running femtosecond Er-fiber lasers. The timing jitter of the lasers is also characterized by an attosecond resolution balanced optical cross correlation method. The comparison between experiment and numerical model shows that the quantum-limited timing jitter of femtosecond lasers sets a fundamental limit on the performance of dual femtosecond laser TOF distance measurements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA