RESUMEN
BACKGROUND: The aberrant secretion and excessive deposition of type I collagen (Col1) are important factors in the pathogenesis of myocardial fibrosis in dilated cardiomyopathy (DCM). However, the precise molecular mechanisms underlying the synthesis and secretion of Col1 remain unclear. METHODS AND RESULTS: RNA-sequencing analysis revealed an increased HtrA serine peptidase 1 (HTRA1) expression in patients with DCM, which is strongly correlated with myocardial fibrosis. Consistent findings were observed in both human and mouse tissues by immunoblotting, quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunohistochemistry, and immunofluorescence analyses. Pearson's analysis showed a markedly positive correlation between HTRA1 level and myocardial fibrosis indicators, including extracellular volume fraction (ECV), native T1, and late gadolinium enhancement (LGE), in patients with DCM. In vitro experiments showed that the suppression of HTRA1 inhibited the conversion of cardiac fibroblasts into myofibroblasts and decreased Col1 secretion. Further investigations identified the role of HTRA1 in promoting the formation of endoplasmic reticulum (ER) exit sites, which facilitated the transportation of Col1 from the ER to the Golgi apparatus, thereby increasing its secretion. Conversely, HTRA1 knockdown impeded the retention of Col1 in the ER, triggering ER stress and subsequent induction of ER autophagy to degrade misfolded Col1 and maintain ER homeostasis. In vivo experiments using adeno-associated virus-serotype 9-shHTRA1-green fluorescent protein (AAV9-shHTRA1-GFP) showed that HTRA1 knockdown effectively suppressed myocardial fibrosis and improved left ventricular function in mice with DCM. CONCLUSIONS: The findings of this study provide valuable insights regarding the treatment of DCM-associated myocardial fibrosis and highlight the therapeutic potential of targeting HTRA1-mediated collagen secretion.
Asunto(s)
Cardiomiopatías , Cardiomiopatía Dilatada , Animales , Humanos , Ratones , Colágeno Tipo I , Medios de Contraste , Fibrosis , Gadolinio , Miocardio/patologíaRESUMEN
Heart failure (HF) is the end stage of the progression of many cardiovascular diseases. Cardiac remodeling is the main pathophysiological process of cardiac function deterioration in HF patients. Inflammation is a key factor that stimulates cardiomyocyte hypertrophy, fibroblast proliferation, and transformation leading to myocardial remodeling, which severity is significantly related to the prognosis of patients. SAA1 (Serum amyloid A1) is a lipid-binding protein that was an important regulator involved in inflammation, whose biological functions in the heart remain rarely known. In this research, we intended to test the role of SAA1 in SAA1-deficient (SAA1-/- ), and wild-type mice were exposed to transverse aortic banding surgery to establish the model of cardiac remodeling. Besides, we assessed the functional effects of SAA1 on cardiac hypertrophy and fibrosis. The expression of SAA1 was increased in the mice transverse aortic banding model induced by pressure overload. After 8 weeks of transverse aortic banding, SAA1-/- mice displayed a lower level of cardiac fibrosis than wild-type mice, but did not significantly influence the cardiomyocyte hypertrophy. In addition, there was also no significant difference in cardiac fibrosis severity between wild-type-sham and knockout-sham mice. These findings are the first to reveal SAA1 absence hinders cardiac fibrosis after 8 weeks of transverse aortic banding. Furthermore, SAA1 deficiency had no significant effect on cardiac fibrosis and hypertrophy in the sham group in this study.
Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Ratones , Animales , FN-kappa B/metabolismo , Miocitos Cardíacos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Remodelación Ventricular/fisiología , Cardiomegalia/metabolismo , Insuficiencia Cardíaca/metabolismo , Cardiomiopatías/metabolismo , Inflamación/metabolismo , Ratones Noqueados , Fibrosis , Ratones Endogámicos C57BL , Modelos Animales de EnfermedadRESUMEN
BACKGROUND: In China, the problem of HIV infection among the older people has become increasingly prominent. This study aimed to analyze the pattern and influencing factors of HIV transmission based on a genomic and spatial epidemiological analysis among this population. METHODS: A total of 432 older people who were aged ≥ 50 years, newly diagnosed with HIV-1 between January 2018 and December 2021 and without a history of ART were enrolled. HIV-1 pol gene sequence was obtained by viral RNA extraction and nested PCR. The molecular transmission network was constructed using HIV-TRACE and the spatial distribution analyses were performed in ArcGIS. The multivariate logistic regression analysis was performed to analyze the factors associated with clustering. RESULTS: A total of 382 sequences were successfully sequenced, of which CRF07_BC (52.3%), CRF01_AE (32.5%), and CRF08_BC (6.8%) were the main HIV-1 strains. A total of 176 sequences entered the molecular network, with a clustering rate of 46.1%. Impressively, the clustering rate among older people infected through commercial heterosexual contact was as high as 61.7% and three female sex workers (FSWs) were observed in the network. The individuals who were aged ≥ 60 years and transmitted the virus by commercial heterosexual contact had a higher clustering rate, while those who were retirees or engaged other occupations and with higher education degree were less likely to cluster. There was a positive spatial correlation of clustering rate (Global Moran I = 0.206, P < 0.001) at the town level and the highly aggregated regions were mainly distributed in rural area. We determined three large clusters which mainly spread in the intra-region of certain towns in rural areas. Notably, 54.5% of cases in large clusters were transmitted through commercial heterosexual contact. CONCLUSIONS: Our joint analysis of molecular and spatial epidemiology effectively revealed the spatial aggregation of HIV transmission and highlighted that towns of high aggregation were mainly located in rural area. Also, we found vital role of commercial heterosexual contact in HIV transmission among older people. Therefore, health resources should be directed towards highly aggregated rural areas and prevention strategy should take critical persons as entry points.
Asunto(s)
Infecciones por VIH , VIH-1 , Epidemiología Molecular , Humanos , VIH-1/genética , VIH-1/clasificación , VIH-1/aislamiento & purificación , China/epidemiología , Infecciones por VIH/transmisión , Infecciones por VIH/epidemiología , Infecciones por VIH/virología , Femenino , Masculino , Persona de Mediana Edad , Anciano , Filogenia , Genotipo , ARN Viral/genética , Análisis Espacial , Análisis por Conglomerados , Anciano de 80 o más AñosRESUMEN
Prompt reperfusion after cerebral ischemia is important to maintain neuronal survival and reduce permanent disability and death. However, the resupply of blood can induce oxidative stress, inflammatory response and apoptosis, further leading to tissue damage. Here, we report the versatile biological roles of transcript-induced in spermiogenesis 40 (Tisp40) in ischemic stroke. We found that the expression of Tisp40 was upregulated in ischemia/reperfusion-induced brain tissues and oxygen glucose deprivation/returned -stimulated neurons. Tisp40 deficiency increased the infarct size and neurological deficit score, and promoted inflammation and apoptosis. Tisp40 overexpression played the opposite role. In vitro, the oxygen glucose deprivation/returned model was established in Tisp40 knockdown and overexpression primary cultured cortical neurons. Tisp40 knockdown can aggravate the process of inflammation and apoptosis, and Tisp40 overexpression ameliorated the aforementioned processes. Mechanistically, Tisp40 protected against ischemic stroke via activating the AKT signaling pathway. Tisp40 may be a new therapeutic target in brain ischemia/reperfusion injury.
Asunto(s)
Isquemia Encefálica , Daño por Reperfusión , Animales , Daño por Reperfusión/metabolismo , Masculino , Isquemia Encefálica/metabolismo , Apoptosis/fisiología , Neuronas/metabolismo , Neuronas/patología , Ratones Endogámicos C57BL , Accidente Cerebrovascular Isquémico/metabolismo , Células Cultivadas , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismoRESUMEN
BACKGROUND: Pathological cardiac hypertrophy is one of the leading causes of heart failure with highly complicated pathogeneses. The E3 ligase TRIM16 (tripartite motif-containing protein 16) has been recognized as a pivotal regulator to control cell survival, immune response, and oxidativestress. However, the role of Trim16 in cardiac hypertrophy is unknown. METHODS: We generated cardiac-specific knockout mice and adeno-associated virus serotype 9-Trim16 mice to evaluate the function of Trim16 in pathological myocardial hypertrophy. The direct effect of TRIM16 on cardiomyocyte enlargement was examined using an adenovirus system. Furthermore, we combined RNA-sequencing and interactome analysis that was followed by multiple molecular biological methodologies to identify the direct target and corresponding molecular events contributing to TRIM16 function. RESULTS: We found an intimate correlation of Trim16 expression with hypertrophy-related heart failure in both human and mouse. Our functional investigations and unbiased transcriptomic analyses clearly demonstrated that Trim16 deficiency markedly exacerbated cardiomyocyte enlargement in vitro and in transverse aortic constriction-induced cardiac hypertrophy mouse model, whereas Trim16 overexpression attenuated cardiac hypertrophy and remodeling. Mechanistically, Prdx1 (peroxiredoxin 1) is an essential target of Trim16 in cardiac hypertrophy. We found that Trim16 interacts with Prdx1 and inhibits its phosphorylation, leading to a robust enhancement of its downstream Nrf2 (nuclear factor-erythroid 2-related factor 2) pathway to block cardiac hypertrophy. Trim16-blocked Prdx1 phosphorylation was largely dependent on a direct interaction between Trim16 and Src and the resultant Src ubiquitinational degradation. Notably, Prdx1 knockdown largely abolished the anti-hypertrophic effects of Trim16 overexpression. CONCLUSIONS: Our findings provide the first evidence supporting Trim16 as a novel suppressor of pathological cardiac hypertrophy and indicate that targeting the Trim16-Prdx1 axis represents a promising therapeutic strategy for hypertrophy-related heart failure.
Asunto(s)
Cardiomegalia , Insuficiencia Cardíaca , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Animales , Cardiomegalia/metabolismo , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/metabolismo , Ratones , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/genéticaRESUMEN
OBJECTIVE: The objective of this study was to conduct a comprehensive analysis of the molecular transmission networks and transmitted drug resistance (TDR) patterns among individuals newly diagnosed with HIV-1 in Nanjing. METHODS: Plasma samples were collected from newly diagnosed HIV patients in Nanjing between 2019 and 2021. The HIV pol gene was amplified, and the resulting sequences were utilized for determining TDR, identifying viral subtypes, and constructing molecular transmission network. Logistic regression analyses were employed to investigate the epidemiological characteristics associated with molecular transmission clusters. RESULTS: A total of 1161 HIV pol sequences were successfully extracted from newly diagnosed individuals, each accompanied by reliable epidemiologic information. The analysis revealed the presence of multiple HIV-1 subtypes, with CRF 07_BC (40.57%) and CRF01_AE (38.42%) being the most prevalent. Additionally, six other subtypes and unique recombinant forms (URFs) were identified. The prevalence of TDR among the newly diagnosed cases was 7.84% during the study period. Employing a genetic distance threshold of 1.50%, the construction of the molecular transmission network resulted in the identification of 137 clusters, encompassing 613 nodes, which accounted for approximately 52.80% of the cases. Multivariate analysis indicated that individuals within these clusters were more likely to be aged ≥ 60, unemployed, baseline CD4 cell count ≥ 200 cells/mm3, and infected with the CRF119_0107 (P < 0.05). Furthermore, the analysis of larger clusters revealed that individuals aged ≥ 60, peasants, those without TDR, and individuals infected with the CRF119_0107 were more likely to be part of these clusters. CONCLUSIONS: This study revealed the high risk of local HIV transmission and high TDR prevalence in Nanjing, especially the rapid spread of CRF119_0107. It is crucial to implement targeted interventions for the molecular transmission clusters identified in this study to effectively control the HIV epidemic.
Asunto(s)
Farmacorresistencia Viral , Infecciones por VIH , VIH-1 , Humanos , VIH-1/genética , VIH-1/clasificación , Infecciones por VIH/epidemiología , Infecciones por VIH/transmisión , Infecciones por VIH/virología , Masculino , Femenino , Adulto , China/epidemiología , Persona de Mediana Edad , Farmacorresistencia Viral/genética , Adulto Joven , Prevalencia , Genotipo , Filogenia , Adolescente , Epidemiología Molecular , Productos del Gen pol del Virus de la Inmunodeficiencia Humana/genética , AncianoRESUMEN
Nonalcoholic fatty liver disease (NAFLD) is a strong stimulant of cardiovascular diseases, affecting one-quarter of the world's population. TBC1 domain family member 25 (TBC1D25) regulates the development of myocardial hypertrophy and cerebral ischemia-reperfusion injury; however, its effect on NAFLD/nonalcoholic steatohepatitis (NASH) has not been reported. In this study, we demonstrated that TBC1D25 expression is upregulated in NASH. TBC1D25 deficiency aggravated hepatic steatosis, inflammation, and fibrosis in NASH. In vitro tests revealed that TBC1D25 overexpression restrained NASH responses. Subsequent mechanistic validation experiments demonstrated that TBC1D25 interfered with NASH progression by inhibiting abnormal lipid accumulation and inflammation. TBC1D25 deficiency significantly promoted NASH occurrence and development. Therefore, TBC1D25 may potentially be used as a clinical therapeutic target for NASH treatment.
Asunto(s)
Hipercolesterolemia , Enfermedad del Hígado Graso no Alcohólico , Hipercolesterolemia/patología , Inflamación/patología , Lípidos , Hígado/metabolismo , Cirrosis Hepática/patología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Masculino , Animales , RatonesRESUMEN
BACKGROUND AND AIMS: NAFLD is a progressive disease without known effective drug treatments. Switch-associated protein 70 (SWAP70) is a guanine nucleotide exchange factor that participates in the regulation of many cellular processes. However, the role of SWAP70 in NAFLD remains unclear. This study aimed to identify the function and mechanism of SWAP70 in NAFLD. APPROACH AND RESULTS: The results showed that the expression of SWAP70 was significantly increased in mice and hepatocytes after metabolic stimulation. Overexpression of SWAP70 in hepatocytes suppressed lipid deposition and inflammation, and SWAP70 knockdown created the inverse effect. Using hepatocyte-specific Swap70 knockout and overexpression mice fed a high-fat, high-cholesterol diet, we demonstrated that SWAP70 suppressed the progression of nonalcoholic steatohepatitis by inhibiting lipid accumulation, inflammatory response, and fibrosis. Mechanically, RNA sequencing analysis and immunoprecipitation assays revealed that SWAP70 inhibited the interaction between transforming growth factor ß-activated kinase 1 (TAK1) binding protein 1 and TAK1 and sequentially suppressed the phosphorylation of TAK1 and subsequent c-Jun N-terminal kinase/P38 signaling. Inhibition of TAK1 activation blocked hepatocyte lipid deposition and inflammation caused by SWAP70 knockdown. CONCLUSIONS: SWAP70 is a protective molecule that can suppress the progression of NAFLD by inhibiting hepatic steatosis and inflammation. SWAP70 may be important for mitigating the progression of NAFLD.
Asunto(s)
Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Animales , Dieta Alta en Grasa/efectos adversos , Hepatocitos/metabolismo , Inflamación/metabolismo , Resistencia a la Insulina/genética , Lípidos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiologíaRESUMEN
BACKGROUND AND AIMS: NASH is becoming a leading cause of liver cirrhosis and HCC. Salidroside (p-hydroxyphenethyl-ß-D-glucoside; SAL) has various biological and pharmacological activities, including anti-inflammatory, -oxidant, and -cancer activities. However, the therapeutic effect and underlying molecular mechanism of SAL in NASH remain to be further clarified. METHODS AND RESULTS: In this study, we found that SAL alleviated lipid accumulation and inflammatory response in primary hepatocytes after palmitic acid/oleic acid (PO) stimulation. In addition, SAL effectively prevented high-fat/high-cholesterol (HFHC)-diet-induced NASH progression by regulating glucose metabolism dysregulation, insulin resistance, lipid accumulation, inflammation, and fibrosis. Mechanistically, integrated RNA-sequencing and bioinformatic analysis showed that SAL promoted AMPK-signaling pathway activation in vitro and in vivo, and this finding was further verified by determining the phosphorylation levels of AMPK. Furthermore, the protective effects of SAL on lipid accumulation and inflammation in hepatocytes and livers induced by PO or HFHC stimulation were blocked by AMPK interruption. CONCLUSIONS: Our studies demonstrate that SAL protects against metabolic-stress-induced NASH progression through activation of AMPK signaling, indicating that SAL could be a potential drug component for NASH therapy.
Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Glucósidos/farmacología , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Fenoles/farmacología , Animales , Células Cultivadas , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Glucósidos/uso terapéutico , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Humanos , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Ratones , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Fenoles/uso terapéutico , Cultivo Primario de Células , Transducción de Señal/efectos de los fármacosRESUMEN
High metal ion concentrations and low pH cause severely inhibit the activity of an acidophilic microbial consortium (AMC) in bioleaching. This work investigated the effects of exogenous spermine on biofilm formation and the bioleaching efficiency of LiCoO2 by AMC in 9K medium. After the addition of 1 mM spermine, the activities of glutathione peroxidase and catalase increased, while the amount of H2O2, intracellular reactive oxygen species (ROS) and malondialdehyde in AMC decreased. These results indicated that the ability of AMC biofilm to resist oxidative stress introduced by 3.5 g/L Li+ and 30.1 g/L Co2+ was improved by spermine. The activity of glutamate decarboxylase was promoted to restore the intracellular pH buffering ability of AMC. Electrochemical measurements showed that the oxidation rate of pyrite was increased by exogenous spermine. As a result, high bioleaching efficiencies of 97.1% for Li+ and 96.1% for Co2+ from a 5.0% (w v-1) lithium cobalt oxide powder slurry were achieved. This work demonstrated that Tafel polarization can be used to monitor the AMC biofilm's ability of uptaking electrons from pyrite during bioleaching. The corrosion current density increased with 1 mM spermine, indicating enhanced electron uptake by the biofilm from pyrite.
Asunto(s)
Peróxido de Hidrógeno , Consorcios Microbianos , Ácidos , Litio , Estrés Oxidativo , EsperminaRESUMEN
Aortic dissection (AD) is a serious condition and a health issue on a global scale. ß-Aminopropionitrile-induced AD in mice is similar to the pathogenesis of AD in humans. Resveratrol (RSV) is a natural polyphenolic substance that provides anti-inflammatory and cardiovascular effects, but the role of RSV in AD is unclear. In this study, we investigated the effects and mechanisms of RSV on ß-aminopropionitrile-induced AD in mice. Our results indicate that RSV can prevent the occurrence of AD. More meaningfully, we found that the protective effect comprises an increase in sirtuin 1 (SIRT1) expression in endothelial cells for the reconstruction of their structure, reducing the recruitment of inflammatory cells by endothelial cells and inhibiting the inflammation response, thereby suppressing the occurrence of AD.
Asunto(s)
Antiinflamatorios/farmacología , Aorta/efectos de los fármacos , Aneurisma de la Aorta/prevención & control , Disección Aórtica/prevención & control , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Resveratrol/farmacología , Sirtuina 1/metabolismo , Aminopropionitrilo , Disección Aórtica/inducido químicamente , Disección Aórtica/enzimología , Disección Aórtica/patología , Animales , Aorta/enzimología , Aorta/patología , Aneurisma de la Aorta/inducido químicamente , Aneurisma de la Aorta/enzimología , Aneurisma de la Aorta/patología , Adhesión Celular/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Citoesqueleto/enzimología , Citoesqueleto/patología , Modelos Animales de Enfermedad , Células Endoteliales de la Vena Umbilical Humana/enzimología , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Masculino , Ratones Endogámicos C57BL , Transducción de Señal , Células THP-1RESUMEN
Polymannuronic acid (PM), one of numerous alginates isolated from brown seaweeds, is known to possess antioxidant activities. In this study, we examined its potential role in reducing body weight gain and attenuating inflammation induced by a high-fat and high-sucrose diet (HFD) as well as its effect on modulating the gut microbiome in mice. A 30-d PM treatment significantly reduced the diet-induced body weight gain and blood TAG levels (P2·0). PM also had a profound impact on the microbial composition in the gut microbiome and resulted in a distinct microbiome structure. For example, PM significantly increased the abundance of a probiotic bacterium, Lactobacillus reuteri (log10 LDA score>2·0). Together, our results suggest that PM may exert its immunoregulatory effects by enhancing proliferation of several species with probiotic activities while repressing the abundance of the microbial taxa that harbor potential pathogens. Our findings should facilitate mechanistic studies on PM as a potential bioactive compound to alleviate obesity and the metabolic syndrome.
Asunto(s)
Alginatos/farmacología , Carbohidratos de la Dieta/efectos adversos , Grasas de la Dieta/efectos adversos , Inflamación/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Sacarosa/efectos adversos , Animales , Carbohidratos de la Dieta/administración & dosificación , Grasas de la Dieta/administración & dosificación , Ácidos Grasos Volátiles/química , Heces/química , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/microbiología , Ácido Glucurónico/farmacología , Ácidos Hexurónicos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Microbiota/efectos de los fármacos , Distribución Aleatoria , Sacarosa/administración & dosificaciónRESUMEN
Cancer is a leading cause of death worldwide, and the identification of biomarkers and subtypes that can predict the long-term survival of cancer patients is essential for their risk stratification, treatment, and prognosis. However, there are currently no standardized tools for exploring cancer biomarkers or subtypes. In this study, we introduced Cancer Biomarker and subtype Profiler (CBioProfiler), a web server and standalone application that includes two pipelines for analyzing cancer biomarkers and subtypes. The cancer biomarker pipeline consists of five modules for identifying and annotating cancer survival-related biomarkers using multiple survival-related machine learning algorithms. The cancer subtype pipeline includes three modules for data preprocessing, subtype identification using multiple unsupervised machine learning methods, and subtype evaluation and validation. CBioProfiler also includes CuratedCancerPrognosisData, a novel R package that integrates reviewed and curated gene expression and clinical data from 268 studies. These studies cover 43 common blood and solid tumors and draw upon 47,686 clinical samples. The web server is available at https://www.cbioprofiler.com/ and https://cbioprofiler.znhospital.cn/CBioProfiler/, and the standalone app and source code can be found at https://github.com/liuxiaoping2020/CBioProfiler.
Asunto(s)
Biomarcadores de Tumor , Internet , Neoplasias , Programas Informáticos , Humanos , Biomarcadores de Tumor/genética , Neoplasias/genética , Neoplasias/clasificación , Biología Computacional/métodosRESUMEN
Metal ions stress will inhibit the oxidation capacity of iron and sulfur of an acidophilic microbial consortium (AMC), which leads to reduced bioleaching efficiency. This work explored the impacts of Li+ and Co2+ on the composition and function of AMC biofilms with a multi-scale approach. At the reactor scale, the results indicated that the oxidative activity, the adsorption capacity, and the biofilm formation ability of AMC on pyrite surfaces decreased under 500 mM Li+ and 500 mM Co2+. At the biofilm scale, the electrochemical measurements showed that Li+ and Co2+ inhibited the charge transfer between the pyrite working electrode and the biofilm, and decreased the corrosion current density of the pyrite working electrode. At the cell scale, the content of proteins in extracellular polymers substrate (EPS) increased as the concentrations of metal ions increased. Moreover, the adsorption capacity of EPS for Li+ and Co2+ increased. At the microbial consortium scale, a BugBase phenotype analysis showed that under 500 mM Li+ and 500 mM Co2+, the antioxidant stress capacity and the content of mobile gene elements in AMC increased. The results in this work can provide useful data and theoretical support for the regulation strategy of the bioleaching of spent lithium-ion batteries to recover valuable metals.
Asunto(s)
Biopelículas , Cobalto , Litio , Consorcios Microbianos , Biopelículas/efectos de los fármacos , Cobalto/química , Cobalto/toxicidad , Consorcios Microbianos/efectos de los fármacos , Hierro/química , Hierro/metabolismo , Adsorción , Sulfuros/química , Electrodos , Oxidación-ReducciónRESUMEN
BACKGROUND: Myocardial fibrosis is an important pathological feature of dilated cardiomyopathy (DCM). The roles of SOCS2 in fibrosis of different organs are controversial. Herein, we investigated the function and potential mechanism of SOCS2 in myocardial fibrosis. METHODS: Bioinformatics, immunohistochemistry (IHC), immunofluorescence (IF), western blot (WB), real-time fluorescence quantitative PCR (qPCR), rat primary myocardial fibroblasts (rCFs) culture, doxorubicin (DOX) induced mouse dilated cardiomyopathy (DCM) model, and in vivo adeno-associated virus (AAV) infection were used to explore the role of SOCS2 in DCM. RESULTS: Bioinformatics analysis showed that SOCS2 was positively correlated with fibrosis related factors. SOCS2 was significantly upregulated in patients and mice with DCM. In vivo experiments showed that targeted inhibition of cardiac SOCS2 could improve mouse cardiac function and alleviate myocardial fibrosis. Further research demonstrated that SOCS2 promoted the transformation of myofibroblasts. Knockdown of SOCS2 reduced the nuclear localization of ß-catenin, which inhibited the fibrogenic effect of Wnt/ß-catenin pathway. In addition, bioinformatics analysis suggested that lymphoid enhancer binding factor 1 (LEF1) was significantly positively correlated with SOCS2. Finally, dual luciferase assays demonstrated that LEF1 could bind to the promoter region of SOCS2, thereby mediating its transcriptional activation. CONCLUSION: SOCS2 could activate the Wnt/ß-catenin by regulating the nuclear translocation of ß-catenin, which induces the transcriptional activation of SOCS2. Overall, these results indicated a positive feedback activation phenomenon between SOCS2, ß-catenin and LEF1 in DCM. These results suggested that inhibition of SOCS2 could effectively alleviate the progression of myocardial fibrosis and improve cardiac function.
Asunto(s)
Fibrosis , Miocardio , Proteínas Supresoras de la Señalización de Citocinas , beta Catenina , Animales , beta Catenina/metabolismo , beta Catenina/genética , Ratones , Fibrosis/metabolismo , Humanos , Ratas , Miocardio/metabolismo , Miocardio/patología , Masculino , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/genética , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Cardiomiopatía Dilatada/genética , Vía de Señalización Wnt , Modelos Animales de Enfermedad , Núcleo Celular/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patología , Ratones Endogámicos C57BLRESUMEN
Background: Thoracic aortic dissection (TAD) is one of the cardiovascular diseases with high incidence and fatality rates. Vascular smooth muscle cells (VSMCs) play a vital role in TAD formation. Recent studies have shown that extracellular S100A4 may participate in VSMCs regulation. However, the mechanism(s) underlying this association remains elusive. Consequently, this study investigated the role of S100A4 in VSMCs regulation and TAD formation. Methods: Hub genes were screened based on the transcriptome data of aortic dissection in the Gene Expression Synthesis database. Three-week-old male S100A4 overexpression (AAV9- S100A4 OE) and S100A4 knockdown (AAV9- S100A4 KD) mice were exposed to ß-aminopropionitrile monofumarate through drinking water for 28 days to create the murine TAD model. Results: S100A4 was observed to be the hub gene in aortic dissection. Furthermore, overexpression of S100A4 was exacerbated, whereas inhibition of S100A4 significantly improved TAD progression. In the TAD model, the S100A4 was observed to aggravate the phenotypic transition of VSMCs. Additionally, lysyl oxidase (LOX) was an important target of S100A4 in TAD. S100A4 interacted with LOX in VSMCs, reduced mature LOX (m-LOX), and decreased elastic fiber deposition, thereby disrupting extracellular matrix homeostasis and promoting TAD development. Elastic fiber deposition in human aortic tissues was negatively correlated with the expression of S100A4, which in turn, was negatively correlated with LOX. Conclusions: Our data showed that S100A4 modulates TADprogression, induces lysosomal degradation of m-LOX, and reduces the deposition of elastic fibers by interacting with LOX, thus contributing to the disruption of extracellular matrix homeostasis in TAD. These findings suggest that S100A4 may be a new target for the prevention and treatment of TAD.
Asunto(s)
Disección Aórtica , Disección de la Aorta Torácica , Masculino , Humanos , Ratones , Animales , Disección Aórtica/genética , Aorta , Matriz Extracelular , Proteína de Unión al Calcio S100A4/genéticaRESUMEN
Doxorubicin (Dox) use is limited by Dox-induced cardiotoxicity. TANK-blinding kinase 1 (TBK1) is an important kinase involved in the regulation of mitophagy, but the role of TBK1 in cardiomyocytes in chronic Dox-induced cardiomyopathy remains unclear. Cardiomyocyte-specific Tbk1 knockout (Tbk1CKO) mice received Dox (6 mg/kg, injected intraperitoneally) once a week for 4 times, and cardiac assessment was performed 4 weeks after the final Dox injection. Adenoviruses encoding Tbk1 or containing shRNA targeting Tbk1, or a TBK1 phosphorylation inhibitor were used for overexpression or knockdown of Tbk1, or inhibit phosphorylation of TBK1 in isolated primary cardiomyocytes. Our results revealed that moderate Dox challenge decreased TBK1 phosphorylation (with no effect on TBK1 protein levels), resulting in compromised myocardial function, obvious mortality and overt interstitial fibrosis, and the effects were accentuated by Tbk1 deletion. Dox provoked mitochondrial membrane potential collapse and oxidative stress, the effects of which were exacerbated and mitigated by Tbk1 knockdown, specific inhibition of phosphorylation and overexpression, respectively. However, Tbk1 ï¼Ser172Aï¼ overexpression did not alleviate these effects. Further scrutiny revealed that TBK1 exerted protective effects on mitochondria via SQSTM1/P62-mediated mitophagy. Tbk1 overexpression mediated cardioprotective effects on Dox-induced cardiotoxicity were cancelled off by Sqstm1/P62 knockdown. Moreover, TBK1-mitophagy-mitochondria cascade was confirmed in heart tissues from dilated cardiomyopathy patients. Taken together, our findings denoted a pivotal role of TBK1 in Dox-induced mitochondrial injury and cardiotoxicity possibly through its phosphorylation and SQSTM1/P62-mediated mitophagy.
Asunto(s)
Cardiotoxicidad , Doxorrubicina , Ratones Noqueados , Mitofagia , Miocitos Cardíacos , Estrés Oxidativo , Proteínas Serina-Treonina Quinasas , Animales , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miocitos Cardíacos/efectos de los fármacos , Mitofagia/efectos de los fármacos , Mitofagia/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Doxorrubicina/efectos adversos , Ratones , Cardiotoxicidad/genética , Cardiotoxicidad/metabolismo , Cardiotoxicidad/patología , Cardiotoxicidad/etiología , Estrés Oxidativo/efectos de los fármacos , Humanos , Fosforilación , Potencial de la Membrana Mitocondrial/efectos de los fármacos , MasculinoRESUMEN
Background/Aims: Metabolic dysfunction-associated fatty liver disease (MASLD) is a chronic liver disease characterized by hepatic steatosis. Ubiquitin-specific proteinase 29 (USP29) plays pivotal roles in hepatic ischemiaâreperfusion injury and hepatocellular carcinoma, but its role in MASLD remains unexplored. Therefore, the aim of this study was to reveal the effects and underlying mechanisms of USP29 in MASLD progression. Methods: USP29 expression was assessed in liver samples from MASLD patients and mice. The role and molecular mechanism of USP29 in MASLD were assessed in high-fat diet-fed and high-fat/high-cholesterol diet-fed mice and palmitic acid and oleic acid treated hepatocytes. Results: USP29 protein levels were significantly reduced in mice and humans with MASLD. Hepatic steatosis, inflammation and fibrosis were significantly exacerbated by USP29 deletion and relieved by USP29 overexpression. Mechanistically, USP29 significantly activated the expression of genes related to fatty acid ß-oxidation (FAO) under metabolic stimulation, directly interacted with Acyl-CoA synthetase long chain family member 5 (ACSL5) and repressed ACSL5 degradation by increasing ACSL5 K48-linked deubiquitination. Moreover, the effect of USP29 on hepatocyte lipid accumulation and MASLD was dependent on ACSL5. Conclusions: USP29 functions as a novel negative regulator of MASLD by stabilizing ACSL5 to promote FAO. The activation of the USP29-ACSL5 axis may represent a potential therapeutic strategy for MASLD.
RESUMEN
Pathological cardiac hypertrophy is one of the major risk factors of heart failure and other cardiovascular diseases. However, the mechanisms underlying pathological cardiac hypertrophy remain largely unknown. Here, we identified the first evidence that TNFAIP3 interacting protein 3 (TNIP3) was a negative regulator of pathological cardiac hypertrophy. We observed a significant upregulation of TNIP3 in mouse hearts subjected to transverse aortic constriction (TAC) surgery and in primary neonatal rat cardiomyocytes stimulated by phenylephrine (PE). In Tnip3-deficient mice, cardiac hypertrophy was aggravated after TAC surgery. Conversely, cardiac-specific Tnip3 transgenic (TG) mice showed a notable reversal of the same phenotype. Accordingly, TNIP3 alleviated PE-induced cardiomyocyte enlargement in vitro. Mechanistically, RNA-sequencing and interactome analysis were combined to identify the signal transducer and activator of transcription 1 (STAT1) as a potential target to clarify the molecular mechanism of TNIP3 in pathological cardiac hypertrophy. Via immunoprecipitation and Glutathione S-transferase assay, we found that TNIP3 could interact with STAT1 directly and suppress its degradation by suppressing K48-type ubiquitination in response to hypertrophic stimulation. Remarkably, preservation effect of TNIP3 on cardiac hypertrophy was blocked by STAT1 inhibitor Fludaradbine or STAT1 knockdown. Our study found that TNIP3 serves as a novel suppressor of pathological cardiac hypertrophy by promoting STAT1 stability, which suggests that TNIP3 could be a promising therapeutic target of pathological cardiac hypertrophy and heart failure.
Asunto(s)
Cardiomegalia , Miocitos Cardíacos , Factor de Transcripción STAT1 , Animales , Humanos , Masculino , Ratones , Ratas , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomegalia/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miocitos Cardíacos/efectos de los fármacos , Fenilefrina/farmacología , Estabilidad Proteica/efectos de los fármacos , Factor de Transcripción STAT1/metabolismo , Ubiquitinación , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismoRESUMEN
Heart transplantation is the gold standard for treating patients with advanced heart failure. Although improvements in immunosuppressive therapies have significantly reduced the frequency of cardiac graft rejection, the incidences of T cell-mediated rejection (TCMR) and antibody-mediated rejection remain almost unchanged. A four-archetype analysis (4AA) model, developed by Philip F. Halloran, illustrated this problem well. It provided a new dimension to improve the accuracy of diagnoses and an independent system for recalibrating the histology guidelines. However, this model was based on the invasive method of endocardial biopsy, which undoubtedly increased the postoperative risk of heart transplant patients. Currently, little is known regarding the associated genes and specific functions of the different phenotypes. We performed bioinformatics analysis (using machine-learning methods and the WGCNA algorithm) to screen for hub-specific genes related to different phenotypes, based Gene Expression Omnibus accession number GSE124897. More immune cell infiltration was observed with the ABMR, TCMR, and injury phenotypes than with the stable phenotype. Hub-specific genes for each of the four archetypes were verified successfully using an external test set (accession number GSE2596). Logistic-regression models based on TCMR-specific hub genes and common hub genes were constructed with accurate diagnostic utility (area under the curve > 0.95). RELA, NFKB1, and SOX14 were identified as transcription factors important for TCMR/injury phenotypes and common genes, respectively. Additionally, 11 Food and Drug Administration-approved drugs were chosen from the DrugBank Database for each four-archetype model. Tyrosine kinase inhibitors may be a promising new option for transplant rejection treatment. KRAS signaling in cardiac transplant rejection is worth further investigation. Our results showed that heart transplant rejection subtypes can be accurately diagnosed by detecting expression of the corresponding specific genes, thereby enabling precise treatment or medication.