Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 32(11): 20401-20411, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38859152

RESUMEN

A FMCW LiDAR system of both the distributed feedback laser and external cavity laser is established in baseband beat notes, rather than up-conversion to an intermediate frequency to exclude flicker noise. Meanwhile, utilizing fast-scanning MEMS mirrors, high-quality real-time (1 fps) 4-D images of the slow-moving object (10 mm/s) can be directly constructed at the baseband with a central frequency as low as 100 kHz and a small Doppler shift. The proposed LiDAR architecture based on such a low-frequency baseband significantly improves the optical power budget on the transmitter side and eliminates the costly high-speed sampling circuits on the receiver side.

2.
Opt Express ; 31(16): 26463-26473, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37710507

RESUMEN

The enhancement in responsivity of photodiodes (PDs) or avalanche photodiodes (APDs) with the traditional flip-chip bonding package usually comes at the expense of degradation in the optical-to-electrical (O-E) bandwidth due to the increase of parasitic capacitance. In this work, we demonstrate backside-illuminated In0.52Al0.48As based APDs with novel flip-chip bonding packaging designed to relax this fundamental trade-off. The inductance induced peak in the measured O-E frequency response of these well-designed and well-packaged APDs, which can be observed around its 3-dB bandwidth (∼30 GHz), effectively widens the bandwidth and becomes more pronounced when the active diameter of the APD is aggressively downscaled to as small as 3 µm. With a typical active window diameter of 14 µm, large enough for alignment tolerance and low optical coupling loss, the packaged APD exhibits a moderate damping O-E frequency response with a bandwidth (36 vs. 31 GHz) and responsivity (3.4 vs. 2.3 A/W) superior to those of top-illuminated reference sample under 0.9 Vbr operation, to attain a high millimeter wave output power (0 dBm at 40 GHz) and output current (12.5 mA at +8.8 dBm optical power). The excellent static and dynamic performance of this design open up new possibilities to further improve the sensitivity at the receiver-end of the next-generation of passive optical network (PON) and coherent communication systems.

3.
Opt Express ; 30(15): 26690-26700, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-36236856

RESUMEN

In this work, a novel design for the electrodes in a near quasi-single-mode (QSM) vertical-cavity surface-emitting laser (VCSEL) array with Zn-diffusion apertures inside is demonstrated to produce an effective improvement in the high-speed data transmission performance. By separating the electrodes in a compact 2×2 coupled VCSEL array into two parts, one for pure dc current injection and the other for large ac signal modulation, a significant enhancement in the high-speed data transmission performance can be observed. Compared with the single electrode reference, which parallels 4 VCSEL units in the array, the demonstrated array with its separated electrode design exhibits greater dampening of electrical-optical (E-O) frequency response and a larger 3-dB E-O bandwidth (19 vs. 15 GHz) under the same amount of total bias current (20 mA). Moreover, this significant improvement in dynamic performance does not come at the cost of any degradation in the static performance in terms of the maximum near QSM optical output power (17 mW @ 20 mA) and the Gaussian-like optical far-field pattern which has a narrow divergence angle (full-width half maximum (FWHM): 10° at 20 mA). The advantages of the separated electrode design lead to a much better quality of 32 Gbit/sec eye-opening as compared to that of the reference device (jitter: 1.5 vs. 2.8 ps) and error-free 32 Gbit/sec transmissions over a 500 m multi-mode fiber has been achieved under a moderate total bias current of 20 mA.

4.
Opt Lett ; 47(15): 3676-3679, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35913287

RESUMEN

Integrated photonics provides a path for miniaturization of an optical system to a compact chip scale and offers reconfigurability by the integration of active components. Here we report a chip-scale reconfigurable scan lens based on an optical phased array, consisting of 30 actively controlled elements on the InP integrated photonic platform. By configuring the phase shifters, we show scanning of a nearly diffraction-limited focused spot with a full width at half maximum spot size down to 2.7 µm at the wavelength of 1550 nm. We demonstrate the key functions needed for a laser-scanning microscope, including light focusing, collection, and steering. We also perform confocal measurements to detect reflection at selective depths.

5.
Opt Lett ; 45(17): 4839-4842, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32870871

RESUMEN

In this work, we demonstrate a novel high-power vertical-cavity surface-emitting laser (VCSEL) array with highly single-mode (SM) and single-polarized output performance without significantly increasing the intra-cavity loss and threshold current (Ith). By combining a low-loss zinc-diffusion aperture with an electroplated copper substrate, we can obtain a highly SM output (side mode suppression ratio >50dB) with a very narrow divergence angle (1/e2:∼10∘) under high output power (3.1 W; 1% duty cycle) and sustain a single polarization state, with a polarization suppression ratio of around 9 dB, under the full range of bias currents. Compared to the reference device without the copper substrate, the demonstrated array can not only switch the output optical spectra from quasi-SM to highly SM but also maintain a close threshold current value (Ith: 0.8 versus 0.7 mA per unit device) and slope efficiency. The enhancement in fundamental mode selectivity of our VCSEL structure can be attributed to the single-polarized lasing mode induced by tensile strain, which is caused by the electroplated copper substrate, as verified by the double-crystal x-ray measurement results.

6.
Opt Express ; 27(5): 7627-7628, 2019 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-30876324

RESUMEN

Photonic technologies that support the low cost manufacturing needed for automotive sensors have experienced explosive developments in recent years. To date most commercially available lidar system have been direct detection time-of-flight (ToF) sensors operating at 905 nm using mechanical mirrors for beam steering. However, these sensors suffer from important drawbacks. One issue is eye-safety, which limits maximum laser powers and hence operating range. Direct detection systems must also content with potential interference issues when lots of cars operate lidar systems simultaneously. In addition, mechanical scanners are frequently bulky and may be difficult to integrate within the form factors allowed by modern vehicles.

7.
Opt Express ; 27(11): 15495-15504, 2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-31163745

RESUMEN

We demonstrate a top-illuminated high-speed uni-traveling carrier photodiode (UTC-PD) with a novel design in the p-type absorber, which can effectively shorten the photon absorption depth at telecommunication wavelengths (1.31~1.55 µm) and further enhance the bandwidth-efficiency product of UTC-PD. In our proposed new UTC-PD structure, the p-type In0.53Ga0.47As absorption layer is replaced by the type-II GaAs0.5Sb0.5 (p)/In0.53Ga0.47As (i) hybrid absorber. Due to the narrowing of the bandgap and enhancement of the photo-absorption process at the type-II interface between the GaAs0.5Sb0.5 and In0.53Ga0.47As layers, our device shows an over 16.7% improvement in the responsivity compared with that of UTC-PD with the same thickness of pure In0.53Ga0.47As absorber (0.7 µm) and a zero optical coupling loss. Our demonstrated device with a simple top-illuminated structure offers a large active mesa (25 µm), a wide optical-to-electrical (O-E) bandwidth (33 GHz), a high responsivity (0.7 A/W), and a high saturation current (>5 mA) under 1.31 µm optical wavelength. These promising results suggest that our proposed PD structure can fundamentally overcome the trade-off among bandwidth, efficiency, and device active diameter of high-speed PDs.

8.
Opt Express ; 25(19): 23181-23190, 2017 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-29041620

RESUMEN

In this paper, we demonstrate that forward bias (+0.9V) of a high-speed silicon (Si) optical Mach-Zehnder modulator (MZM) increases the radio-frequency (RF) link gain by 30 dB when compared to reverse bias operation (-8V). RF applications require tunable, narrowband electro-optic conversion with high gain to mitigate noise of the optical receiver and realize high RF spur-free dynamic range. Compared to reverse bias, the forward bias gain rolls off more rapidly but offers higher RF link gain improvement of more than 13.2 dB at 20 GHz. Furthermore, forward bias is shown to result in comparable spurious-free dynamic range (SFDR: 104.5 dB.Hz2/3). We demonstrate through an analytical dc transfer curve the existence of simultaneous high gain and OIP3 and verify the theoretical results with measurement under forward bias at a bias point of around +0.9 V.

9.
Opt Express ; 25(3): 2422-2431, 2017 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-29519088

RESUMEN

We demonstrate a photonic microwave generator on the heterogeneous silicon-InP platform. Waveguide photodiodes with a 3 dB bandwidth of 65 GHz and 0.4 A/W responsivity are integrated with lasers that tune over 42 nm with less than 150 kHz linewidth. Microwave signal generation from 1 to 112 GHz is achieved.

10.
Opt Express ; 25(22): 27715-27723, 2017 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-29092242

RESUMEN

We report InAs/InGaAs quantum dot (QD) waveguide photodetectors (PD) monolithically grown on silicon substrates. A high-crystalline quality GaAs-on-Si template was achieved by aspect ratio trapping together with the combined effects of cyclic thermal annealing and strain-balancing layer stacks. An ultra-low dark current of 0.8 nA and an internal responsivity of 0.9 A/W were measured in the O band. We also report, to the best of our knowledge, the first characterization of high-speed performance and the first demonstration of the on-chip photodetection for this QD-on-silicon system. The monolithically integrated waveguide PD shares the same platform as the previously demonstrated micro-ring lasers and can thus be integrated with laser sources for power monitors or amplifiers for pre-amplified receivers.

11.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 39(5): 629-636, 2017 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-29125104

RESUMEN

Objective To investigate the polymorphisms of 23 Y-STR loci in a Han population in Jiangsu province. Methods Blood samples were collected from 4821 unrelated healthy Han males in Jiangsu province. DNA templates were amplified by PowerPlex Y23 kit,and the amplification products were detected by 3500xL genetic analyzer. Then,we calculated the allele frequencies and gene diversities respectively,as well as the haplotype frequencies and haplotype diversities. Results The gene diversity of these 23 Y-STR loci ranged 0.4099-0.9696. A total of 4781 haplotypes were detected,of which 4743 were found once. The haplotype diversity was 0.99999812. Conclusion The 23 Y-STR loci used in this study are highly polymorphic in Han individuals in Jiangsu province and therefore suitable for population genetic study and forensic individual identification.


Asunto(s)
Pueblo Asiatico/genética , Cromosomas Humanos Y/genética , Genética de Población , Polimorfismo Genético , China , Frecuencia de los Genes , Haplotipos , Humanos , Masculino , Repeticiones de Microsatélite
12.
J Org Chem ; 81(9): 3568-75, 2016 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-27031001

RESUMEN

A new method was developed to synthesize N(2)-alkyl-substituted 1,2,3-triazole through N-iodosuccinimide (NIS) mediated iodofuctionalization reaction of the alkene group with bi-, mono-, and unsubstituted NH-1,2,3-triazoles. The favored N-1 type hydrogen bond between the iodonium ion intermediate and 1,2,3-triazole was supposed to be generated, which gave the desired N(2)-alkyl triazole with a high N(2)-selectivity.

13.
J Org Chem ; 80(24): 12733-9, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26599304

RESUMEN

A new method was developed to synthesize polyfunctionalized dihydrofuran and tetrahydrofuran derivatives from the three-component [2 + 2 + 1] cycloaddition of the diazoesters with aryl/alkenyl aldehydes and alkyne/olefin dipolarophiles by using a Ag(I) N-heterocyclic carbene complex as the catalyst. A carbonyl ylide intermediate was generated, which undertook an endo-type 1,3-dipolar cycloaddition to provide the desired dihydro-/tetrahydrofurans in high regio- and diastereoselectivities by using α-aryl or α-alkenyl diazoesters.

14.
Opt Express ; 21(12): 14109-19, 2013 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-23787601

RESUMEN

We demonstrate that a near-single-cycle photonic millimeter-wave short-pulse generator at W-band is capable to provide high spatial resolution three-dimensional (3-D) radar imaging. A preliminary study indicates that 3-D radar images with a state-of-the-art ranging resolution of around 1.2 cm at the W-band can be achieved.


Asunto(s)
Imagenología Tridimensional/instrumentación , Radar/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Microondas
15.
Opt Express ; 21(9): 11475-81, 2013 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-23670004

RESUMEN

A high-performance photonic sweeping-frequency (chirped) radio-frequency (RF) generator has been demonstrated. By use of a novel wavelength sweeping distributed-feedback (DFB) laser, which is operated based on the linewidth enhancement effect, a fixed wavelength narrow-linewidth DFB laser, and a wideband (dc to 50 GHz) photodiode module for the hetero-dyne beating RF signal generation, a very clear chirped RF waveform can be captured by a fast real-time scope. A very-high frequency sweeping rate (10.3 GHz/µs) with an ultra-wide RF frequency sweeping range (~40 GHz) have been demonstrated. The high-repeatability (~97%) in sweeping frequency has been verified by analyzing tens of repetitive chirped waveforms.


Asunto(s)
Rayos Láser , Oscilometría/instrumentación , Telecomunicaciones/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Retroalimentación
16.
Opt Express ; 20(19): 21223-34, 2012 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-23037246

RESUMEN

A 25 Gbits/s error-free on-off-keying (OOK) wireless link between an ultra high-speed W-band photonic transmitter-mixer (PTM) and a fast W-band envelope detector is demonstrated. At the transmission end, the high-speed PTM is developed with an active near-ballistic uni-traveling carrier photodiode (NBUTC-PD) integrated with broadband front-end circuitry via the flip-chip bonding technique. Compared to our previous work, the wireless data rate is significantly increased through the improvement on the bandwidth of the front-end circuitry together with the reduction of the intermediate-frequency (IF) driving voltage of the active NBUTC-PD. The demonstrated PTM has a record-wide IF modulation (DC-25 GHz) and optical-to-electrical fractional bandwidths (68-128 GHz, ~67%). At the receiver end, the demodulation is realized with an ultra-fast W-band envelope detector built with a zero-bias Schottky barrier diode with a record wide video bandwidth (37 GHz) and excellent sensitivity. The demonstrated PTM is expected to find applications in multi-gigabit short-range wireless communication.

17.
Sci Rep ; 12(1): 16541, 2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36192421

RESUMEN

We demonstrate a novel avalanche photodiode (APD) design which fundamentally relaxes the trade-off between responsivity and saturation-current performance at receiver end in coherent system. Our triple In0.52Al0.48As based multiplication (M-) layers with a stepped electric (E-) field inside has more pronounced avalanche process with significantly less effective critical-field than the dual M-layer. Reduced E-field in active M-layers ensures stronger E-field allocation to the thick absorption-layer with a smaller breakdown voltage (Vbr) resulting in less serious space-charge screening effect, less device heating at high output photocurrent. Compared to the dual M-layer reference sample, the demonstrated APD exhibits lower punch-through (- 9 vs. - 24 V)/breakdown voltages (- 43 vs. - 51 V), higher responsivity (19.6 vs. 13.5 A/W), higher maximum gain (230 vs. 130), and higher 1-dB saturation-current (> 5.6 vs. 2.5 mA) under 0.95 Vbr operation. Extremely high saturation-current (> 14.6 mA), high responsivity (7.3 A/W), and decent O-E bandwidth (1.4 GHz) can be simultaneously achieved using the demonstrated APD with a 200 µm active window diameter. In coherent FMCW LiDAR test bed, this novel APD exhibits a larger signal-to-noise ratio and high-quality 3-D images than the reference dual M-layer and high-performance commercial p-i-n PD modules, while requiring significantly less optical local-oscillator (LO) power (0.5 vs 4 mW).

18.
Opt Express ; 17(26): 24250-60, 2009 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-20052136

RESUMEN

Compact and passive-alignment 4-channel x 2.5-Gbps optical interconnect modules are developed based on the silicon optical benches (SiOBs) of 5 x 5 mm2. A silicon-based 45 degrees micro-reflector and V-groove arrays are fabricated on the SiOB using anisotropic wet etching. Moreover, high-frequency transmission lines of 4 channel x 2.5 Gbps, and bonding pads with Au/Sn eutectic solder are also deposited on the SiOB. The vertical-cavity surface-emitting laser (VCSEL) array and photo-detector (PD) array are flip-chip assembled on the intended positions. The multi-mode fiber (MMF) ribbons are passively aligned and mounted onto the V-groove arrays. Without the assistance of additional optics, the coupling efficiencies of VCSEL-to-MMF in the transmitting part and MMF-to-PD in the receiving part can be as high as -5.65 and -1.98 dB, respectively, under an optical path of 180 microm. The 1-dB coupling tolerance of greater than +/- 20 microm is achieved for both transmitting and receiving parts. Eye patterns of both parts are demonstrated using 15-bit PRBS at 2.5 Gbps.


Asunto(s)
Rayos Láser , Lentes , Fotometría/instrumentación , Refractometría/instrumentación , Silicio/química , Telecomunicaciones/instrumentación , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Microondas , Miniaturización , Integración de Sistemas
19.
Opt Express ; 16(21): 16860-6, 2008 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-18852793

RESUMEN

We demonstrate, for the first time to our knowledge, GaAs-based transverse-junction (TJ) superluminescent diodes (SLDs) that operate at a wavelength of 1.1 microm. Due to lateral current injection by use of TJ, specified as transverse carrier flow spread in each quantum well horizontally instead of vertical well-by-well injection, nonuniform carrier distribution can be minimized among different multiple quantum wells (MQWs), which is a problem in vertical-junction (VJ) SLDs whose electroluminescent (EL) spectrum is governed by the center wavelength of QWs near the p side. In contrast with a VJ SLD, the EL spectrum of our device is determined by QWs that have a larger differential gain than the positions of QWs neighbored with a p side layer.


Asunto(s)
Láseres de Semiconductores , Iluminación/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Semiconductores
20.
Opt Express ; 14(12): 5031-7, 2006 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-19516663

RESUMEN

We demonstrate the optical heterodyne diagnostics and high saturation power characteristics of a novel undoped InP sandwiched In(0.53)Ga(0.47)As p-i-n photodiode with a partially p-doped photoabsorption layer, which is grown on a linearly graded metamorphic In(x)Ga(1-x)P buffered GaAs substrate layer and exhibits an excellent low dark current density of 3.6x10(-7) A/cm(2). Such a top-illuminated optical receiver exhibits an illuminating window of 60-mum diameter, which performs ultra-linear power handling capability up to 18 dBm at 1550 nm, providing a maximum photocurrent of 35 mA under a reverse bias of 9 volts. These result in extremely high current bandwidth and bandwidth-responsivity products of 350 mA*GHz and 4.8 GHz*A/W, respectively, at receiving frequency of up to 10 GHz.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA