Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
CNS Neurosci Ther ; 30(2): e14544, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38372446

RESUMEN

AIMS: Autonomic dysfunction with central autonomic network (CAN) damage occurs frequently after intracerebral hemorrhage (ICH) and contributes to a series of adverse outcomes. This review aims to provide insight and convenience for future clinical practice and research on autonomic dysfunction in ICH patients. DISCUSSION: We summarize the autonomic dysfunction in ICH from the aspects of potential mechanisms, clinical significance, assessment, and treatment strategies. The CAN structures mainly include insular cortex, anterior cingulate cortex, amygdala, hypothalamus, nucleus of the solitary tract, ventrolateral medulla, dorsal motor nucleus of the vagus, nucleus ambiguus, parabrachial nucleus, and periaqueductal gray. Autonomic dysfunction after ICH is closely associated with neurological functional outcomes, cardiac complications, blood pressure fluctuation, immunosuppression and infection, thermoregulatory dysfunction, hyperglycemia, digestive dysfunction, and urogenital disturbances. Heart rate variability, baroreflex sensitivity, skin sympathetic nerve activity, sympathetic skin response, and plasma catecholamine concentration can be used to assess the autonomic functional activities after ICH. Risk stratification of patients according to autonomic functional activities, and development of intervention approaches based on the restoration of sympathetic-parasympathetic balance, would potentially improve clinical outcomes in ICH patients. CONCLUSION: The review systematically summarizes the evidence of autonomic dysfunction and its association with clinical outcomes in ICH patients, proposing that targeting autonomic dysfunction could be potentially investigated to improve the clinical outcomes.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo , Sistema Nervioso Autónomo , Humanos , Sistema Nervioso Autónomo/fisiología , Sistema Nervioso Simpático/fisiología , Enfermedades del Sistema Nervioso Autónomo/etiología , Enfermedades del Sistema Nervioso Autónomo/terapia , Nervio Vago/fisiología , Hemorragia Cerebral/complicaciones , Hemorragia Cerebral/terapia , Frecuencia Cardíaca/fisiología
2.
J Neuroimmunol ; 387: 578285, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38219400

RESUMEN

BACKGROUND: Rituximab effectively targets B cells and reduces relapses in neuromyelitis optica spectrum disorder (NMOSD). But the ideal dosage and treatment intervals remain unanswered. We aimed to assess the efficacy and safety of low and ultralow-dose rituximab in NMOSD. METHODS: We conducted a retrospective analysis of NMOSD patients treated with rituximab at two Chinese tertiary hospitals. Patients received either a low-dose regimen (500 mg reinfusion every 6 months) or an ultralow-dose regimen: 100 to 300 mg rituximab based on CD19+B cells (100 mg for 1-1.5% of peripheral blood mononuclear cells, 200 mg for 1.5-5%, and 300 mg for over 5%). RESULTS: We analyzed data from 136 patients (41 in the low-dose group, 95 in the ultralow-dose group) with median follow-up durations of 43 and 34.2 months, respectively. Both groups exhibited similar sex distribution, age at disease onset, annual relapse rate, and baseline disease duration. Survival analysis showed that ultralow-dose rituximab was noninferior to low-dose rituximab in preventing relapses. Infusion reactions occurred in 20 of 173 (11.6%) low-dose treatments and 9 of 533 (1.7%) ultralow-dose treatments. B-cell re-emergence was observed in 137 of 236 (58.1%) monitors in the low-dose group and 367 of 1136 (32.3%) monitors in the ultralow-dose group. CONCLUSION: Ultralow dose rituximab was noninferior to low-dose rituximab in preventing NMOSD relapses. A randomized controlled trial is essential to validate these findings.


Asunto(s)
Neuromielitis Óptica , Humanos , Rituximab , Factores Inmunológicos , Estudios Retrospectivos , Leucocitos Mononucleares , Recurrencia , Acuaporina 4
3.
EMBO Mol Med ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148004

RESUMEN

Intravenous thrombolysis using recombinant tissue plasminogen activator (tPA) remains the primary treatment for patients with acute ischemic stroke (AIS). However, the mechanism of tPA-related hemorrhagic transformation (HT) remains poorly understood. Elevation of histidine-rich glycoprotein (HRG) expression was detected by nano-liquid chromatography tandem mass spectrometry at 1 h following tPA infusion as compared to baseline prior to tPA infusion (discovery cohort, n = 10), which was subsequently confirmed in a validation cohort (n = 157) by ELISA. Surprisingly, no elevation of HRG was detected in individuals who subsequently developed HT. During in vitro experiments, HRG reduced neutrophil NETosis, inflammatory cytokine production, and migration across the blood-brain barrier induced by tPA. In a photothrombotic murine AIS model, HRG administration ameliorated HT with delayed thrombolysis, by inhibiting neutrophil immune infiltration and downregulating pro-inflammatory signaling pathways. Neutrophil depletion or NETosis inhibition also alleviated HT, whereas HRG siRNA treatment exacerbated HT. In conclusion, fluctuations in HRG levels may reflect tPA therapy and its associated HT. The inhibitory effect of HRG on neutrophils may counteract tPA-induced immune abnormalities and HT in patients with AIS.

4.
Sci Adv ; 10(29): eadp5239, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028822

RESUMEN

Aged patients often suffer poorer neurological recovery than younger patients after traumatic brain injury (TBI), but the mechanisms underlying this difference remain unclear. Here, we demonstrate abnormal myelopoiesis characterized by increased neutrophil and classical monocyte output but impaired nonclassical patrolling monocyte population in aged patients with TBI as well as in an aged murine TBI model. Retrograde and anterograde nerve tracing indicated that increased adrenergic input through the central amygdaloid nucleus-bone marrow axis drives abnormal myelopoiesis after TBI in a ß2-adrenergic receptor-dependent manner, which is notably enhanced in aged mice after injury. Selective blockade of ß2-adrenergic receptors rebalances abnormal myelopoiesis and improves the outcomes of aged mice after TBI. We therefore demonstrate that increased ß2-adrenergic input-driven abnormal myelopoiesis exacerbates post-TBI neuroinflammation in the aged, representing a mechanism underlying the poorer recovery of aged patients and that blockade of ß2-adrenergic receptor is a potential approach to promote neurological recovery after TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Mielopoyesis , Enfermedades Neuroinflamatorias , Receptores Adrenérgicos beta 2 , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Adulto Joven , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/etiología , Enfermedades Neuroinflamatorias/patología , Neutrófilos/metabolismo , Receptores Adrenérgicos beta 2/metabolismo
5.
Sci Transl Med ; 16(736): eadg5116, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38416841

RESUMEN

Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune astrocytopathy of the central nervous system, mediated by antibodies against aquaporin-4 water channel protein (AQP4-Abs), resulting in damage of astrocytes with subsequent demyelination and axonal damage. Extracellular communication through astrocyte-derived extracellular vesicles (ADEVs) has received growing interest in association with astrocytopathies. However, to what extent ADEVs contribute to NMOSD pathogenesis remains unclear. Here, through proteomic screening of patient-derived ADEVs, we observed an increase in apolipoprotein E (APOE)-rich ADEVs in patients with AQP4-Abs-positive NMOSD. Intracerebral injection of the APOE-mimetic peptide APOE130-149 attenuated microglial reactivity, neuroinflammation, and brain lesions in a mouse model of NMOSD. The protective effect of APOE in NMOSD pathogenesis was further established by the exacerbated lesion volume in APOE-deficient mice, which could be rescued by exogenous APOE administration. Genetic knockdown of the APOE receptor lipoprotein receptor-related protein 1 (LRP1) could block the restorative effects of APOE130-149 administration. The transfusion ADEVs derived from patients with NMOSD and healthy controls also alleviated astrocyte loss, reactive microgliosis, and demyelination in NMOSD mice. The slightly larger beneficial effect of patient-derived ADEVs as compared to ADEVs from healthy controls was further augmented in APOE-/- mice. These results indicate that APOE from astrocyte-derived extracellular vesicles could mediate disease-modifying astrocyte-microglia cross-talk in NMOSD.


Asunto(s)
Neuromielitis Óptica , Humanos , Animales , Ratones , Astrocitos/metabolismo , Acuaporina 4 , Proteómica , Apolipoproteínas E , Autoanticuerpos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA